

Balkan Association of Power Transmissions (BAPT)

Balkan Journal of Mechanical Transmissions (BJMT)

Volume 2 (2012), Issue 1, pp. 61-72

ISSN 2069-5497

ROmanian Association of MEchanical Transmissions (ROAMET)

AN EXTENSION OF THE ELECTROMECHANICAL ANALOGY IN THE DOMAIN OF HYDROSTATIC TRANSMISSIONS

Part I. THE ELECTROMAGNETIC AND ELECTROMECHANICAL ANALOGIES

Mircea RADULESCU

ABSTRACT. The paper aims to expand the electromechanical analogy in other domains of technology: hydraulic, pneumatic, acoustic, sonic, and even in thermodynamics.

In addition to the similarity of the equations and mathematical models, in the domain of fluidic systems we have highlighted the analogy of the circuit elements and some basic structures, for which the equivalent schemes are given. Analogy tables are presented, including the important sizes, units, symbols and generalized mathematical models applicable in all domains above and the advantages of the analogy and its limits of application are highlighted.

KEYWORDS. Electromechanic / hydraulic analogy, generalized parameters, electric / mechanical / hydraulic resistance / inductance / capacity / impedance, analogy of sizes / equations, limits of the analogy.

	NOMENCLATURE	V, ΔV [m°]	volume; finite fluid volume variation	
Symbol	Description	$\omega; \omega_0 [rad / s]$	angular/natural frequency	
\vec{A} ; $\vec{B} = \nabla \times \vec{A}$	electrodynamic vector potential	z = x + jy	complex number $(j = \sqrt{-1})$	
<i>B</i> _e [Ω ⁻¹]	electric susceptance	(R ; θ; λ)	spatial polar coordinates	
$B_L [N/m^2]$	bulk modulus of elasticity of liquid	τ	apparent power mass density	
$C_e = S_e^{-1} [F]$	electric capacity / elastance	DC	ABBREVIATIONS	
f[Hz]	circular frequency	Р.С. В.С.; І.С.	boundary conditions/initial conditions	
$I_H = \Delta H / L [-]$	hydraulic slope	S.C.P.; S.D.P.	lumped/distributed parameters system	
K _D	diffusion coefficient in electrochemistry	L.F.; I.F. O.D.E.; P.D.E.	local (differential)form / integral form ordinary/partial differential equations	
К _Н [m ³]	flow module in hydrodynamics	E.Q.S.;M.Q.S.	electric/magnetic quasistationary	
L _e [H]	electric inductance		1. INTRODUCTION	
M _H [s ² m ⁻⁵] n[-]	hydraulic module in hydrodynamics nondimensional exponent of <i>R_H</i> - hydraulic resistance to motion	The analogy is one of the basic methods use research various areas of physics-spe phenomena, being based on the formal identif		
$Q; \Delta Q[m^3 / s]$	volumetric flow/leakage flow	mathematical phenomenon a	not the similar phenomenon. Therefore,	
$p;\Delta p = p_i - p_e$	pressure; drop/jump pressure	the analogy n	nethod allows solving problems in a	
$R_e = G_e^{-1} [\Omega]$	electric resistance / conductance	particular doma where the phe	ain, using the results from another field, nomena of the two domains have the	
$Re = v dv^{-1}[-]$	Reynolds number in hydraulic pipes	same mathema	atical model (are analogue).	
R _L ;R'[Ns / m ⁵]	linear/linearised hydraulic resistance to fluid motion	The scale of an values of the f	halogy is the constant ratio between the two similar sizes, which belong to the	
$R_N\left[\frac{Ns^n}{m^{3n+2}} ight]$	non-linear hydraulic resistance to motion of fluid	two domains a mathematical i the two pheno	and must verify the (formally identical) models which express the conduct of omena. The analogy is partial, if only	
s [m] T [K] U [Nm] V _g [m ³ / rot]	curvilinear coordinate; string deviation thermodynamic temperature scalar potential of the force Basic geometrical volume of rotary hydraulic volumic machines	some of the q phenomena a modeling of regarding their application of r	uantities involved in the description of ire analogue. During the dynamic complex systems, difficulties arise, direct analysis, so that sometimes the methods of study and indirect analysis	

are required, allowing the complete knowledge of the studied phenomenon, based on observations and experimental research performed on similar models.

The biunivocal correspondence between the original phenomenon and its model allows that, on the basis of rules and assumptions established a priori, the variables that can not be assessed on the primary (original) system can be determined on the analog model; based on information obtained from the model, some conclusions can be drawn on the original behavior. Frequently, the original system (a mechanical, acoustic, hydraulic, pneumatic or thermal system) is studied on an analog electric model, this providing the research of the phenomenon on an equivalent electric or electronic circuit, which allows the processing of results and the implementation of solving methods from the electric field in the area of interest. Similar models in the electric field are preferred, as their structure and operation have been improved based on results obtained in the theory of electrical circuits. In these circumstances, the analogy can be a process of synthesis of complex non-electric circuits, based on synthesis algorithms specific to electric or electronic circuits.

A detailed approach of the studies regarding the analogy is shown by Olson (1958), Kinsler (1962), Levi (1966), Hackenschmidt (1972), Stanomir (1989), and Fransua (1999).

2. REQUIREMENTS OF THE ELECTROMECHANICAL ANALOGY

The electromechanic analogy has the advantage that it can easily adapt to the following requirements specific to the study of physical phenomena by modeling (as shown by Stanomir, 1982).

- 1. The model should ensure a broad representation of the original, that is to allow highlighting its unknown properties; they must be better known than the ones of the original, or must be easily experimentally modeled;
- 2. The bonds of the non-electric system must be holonome, scleronome and linear and the system must have a linear equivalent graph and only elementary one-port structures.
- 3. The specific dynamic process of the original system to be studied on the analog model will strictly collapse (limit) to the domain of interest;
- 4. Based on the scheme of the original model, we can establish the equivalent electrical scheme; for example, the series / parallel connection of elements that goes into the original, must be replaced with similar elements of circuit, connected properly, in series / parallel;
- 5. The physical character of a quantity of the original system must be maintained to the study on the analogue system; for example, the hydraulic potential must have as analogous the electric potential, etc.

6. Any analogy must respect the principle of conservation of energy, so that the condition of compatibility from an analogy to the other derived from it, is to be a biunique correspondence of powers for the two domains of the similar phenomena; for this reason, the equations from the mathematical model of the analog electrical circuit must be isomorphic with the mathematical model equations of the studied (original) system, as defined in the biunique correspondence.

The analogy of non-electrical elements and circuits (mechanic, acoustic, thermic, hydraulic, pneumatic, sonic etc.) with the electrical ones allows the modeling of the original system, based on some active circuit elements (sources) connected to passive elements (resistances, inductances, capacities, perditances) through specific junction elements. Since the analogy of sizes and mathematical models also aims an analogy of the physical laws specific to analogue circuits (systems), some theorems and laws of the electric disciplines can be properly translated into laws and theorems expressing the phenomena of the domain of interest (the original domain); example: Kirchhoff's theorems, Ohm's law, the law of electromagnetic induction, the transfiguration theorem, superposition theorem, $Y \leftrightarrow \Delta$ transfiguration etc. (as shown by Mocanu, 1979, Şora, 1982, Stanomir, 1989).

3. GENERALIZED PARAMETERS

The need to extend the electromechanical analogy to other non-electric domains, which derive from mechanics, becomes obvious with the approach of interdisciplinary researches with applicability in science vanguard fields like space flight engineering, mecatronics etc. There is also a need to establish a common language based on the essential role of the extended analogy between the domains corresponding to physical systems that aim the interdisciplinary science objectives.

The degree of generality of the analogy can be significantly increased if the quantities involved in the description of the phenomena are brought to dimensionless forms and if a common language, with general validity is adopted. In order to highlight the domain of application for some extended analogies, generalized power variables are introduced: f (flow) and e (effort), and on this basis we can define the generalized energy variables (as shown by Buculei, 1993, Rădulescu, 2005).

We can generalize some non-electric sizes, similar to those associated with passive circuit elements (resistances, inductances, capacities, perditances etc.); these quantities are introduced taking into account the analogy of some basic laws from the disciplines with non-electric profile, with laws and equations of circuit and electrical machines theory. Table 1 gives a generalization of the basic parameters that characterize some systems/devices and the elements of machines and circuits.

Table	1.	Generalized	parameters
-------	----	-------------	------------

	Parameters
	Displacement: $q(t) = \int_{0}^{t} f(\tau) d\tau$, $q(0) = 0$
ieral	Pulse: $\Im(t) = \int_{e}^{t} e(\tau) d\tau$, $\Im(0) = 0$
Ger	Generalized power: $P = ef = \Pi [W]$; Generalized energy: $E(t) = \int_{0}^{t} P(\tau) d\tau$, $E(0) = 0 [J]$
	Action: $A(t) = q(t)\Im(t) [J]$; Impedance: $\underline{Z} = \underline{e} / \underline{f} = R + jX = \underline{Y}^{-1}[\Omega]; j = \sqrt{-1}$
	Admittance: $\underline{Y} = G - jB \left[S = \Omega^{-1} \right]$
	Displacement: $q_m = \begin{cases} x[m], stroke length - for linear hydraulic volumic machines (L.M.) \\ \varphi[rad], angle - for rotary hydraulic volumic machines (R.M.) \end{cases}$
	Velocity: $w = \begin{cases} v = \dot{q} [m / s], \text{ linear velocity of the mobile equipment of the machine – L.M.} \\ \omega = \dot{\phi} [rad / s], \text{ angular velocity of the rotative parts of the machine – R.M.} \end{cases}$
	[F[N]], force reduced to the stroke of the machine – L.M.
_	Effort: $\phi = \begin{cases} D \\ M \begin{bmatrix} Nm \end{bmatrix}$, torque reduced to the rotor axis of the machine – R.M.
nica	[m[kg]], mass reduced to the stroke axis – L.M.
Mecha	Mass: $M = \left\{ J \left[Nm^2 s \right], momentum of gyration reduced to the rotor axis – R.M. \right\}$
	Damping constant : $k_w = \begin{cases} k_v [Ns / m] - viscous friction constant - L.M. \\ (R_m) \end{cases}$
	Mechanical stiffness: $k_q = \frac{d\phi}{dq} = \begin{cases} k_x [N / m], elastic constant, for linear deformations - L.M. \\ k_{\varphi} [Nm / rad], elastic constant, for angular deformations - R.M. \end{cases}$
	Elementary work: $\delta L = \phi \cdot \delta q [J]$; Overall energy: $W = W_c + W_p = \frac{1}{2} (M W^2 + K_m q^2) [J]$
	Geometric capacity: $K = \begin{cases} V_g / 2\pi [m^3 / rad], V_g - basic geometric volume - R.M. \\ A or A [m^3 / m] the niston area of the active chamber - I.M. \end{cases}$
	$\begin{bmatrix} A_1 & A_2 & [m + m] \end{bmatrix}, \text{ the piston area of the active chamber } - L.M.$
	$d(\Lambda n) = \begin{cases} R_{1} [N_{5} / m^{5}], \text{ linear resistance}(Re < Re_{re}) \end{cases}$
	$R_{H} = \frac{\alpha(\Delta P)}{\Delta Q} = \begin{cases} R_{N}[Ns^{n} / m^{3n+2}]; n \in (1, 2], nonlinear resistance(Re > Re_{cr}) \end{cases}$
<u>.0</u>	Hydraulic leakage conductance: $G_H = \Delta Q / p \left[m^5 / N \right]$
fraul	Hydraulic resistance to acceleration (hydraulic inertance/inductance):
Hyo	$L_H = \Delta p / Q = H \left[Ns^2 / m^5 \right]$; Hydraulic mobility: $M_H = L_H^{-1} \left[m^5 / Ns^2 \right]$
	Hydraulic capacity: $C_H = \Delta Q / p \left[m^5 / N \right];$
	Hydraulic resistance to deformation / hydraulic capacity: $D_H = C_H^{-1} \left[N / m^5 \right]$
	Hydraulic stiffness: $R_h = \frac{\partial \phi}{\partial q} \Big _{Q=0} \Big[Nm \cdot rad^{-2} \Big]$
	Hydraulic compliance: $\Lambda_h = C_H / K^2 = R_h^{-1} [N^{-1}m^{-1}rad]$

4. THE ELECTRIC / MAGNETIC ANALOGY

Table 2 shows the analogy between the equations of the electric steady field and the ones of the magnetic field. Most of the sizes and definition relationships have the same shape in both domains (volumic density of the energy and forces, stored energy, flux / circulation of the fields, generalized forces etc.). Most laws and theorems are also similar (Kirchhoff's theorems, the constitutive relationships, the uniqueness and superposition theorems etc.), as shown by Levi (1966) and Şora (1982).

Table 3 presents the summarized analogy by comparing the definitions and properties of the electrostatic, electrokinetic and magnetic fields. For particular cases (P.C.) we have assumed the three mediums are linear, isotropic and homogenous. In this case there is also a similarity between some definitions and laws of the three domains (as mentioned by Stan, 2005).

The analogy between the stationary electric and magnetic fields can help solving some theoretical and experimental problems regarding the study of electric circuits using already known results in electrostatics / magnetostatics or vice versa. A good example would be determining some electrostatic characteristics using experimental models in electro-kinetics using electrolytic tanks or electroconductive paper. When choosing the physical model one must take into consideration the condition that the two analogue models have similar configurations.

The previous observations mentioned prove their utility mainly in the didactic field and mostly in interdisciplinary practical courses (electromechanics, magnetohydrodynamics, mecatronics, robotics etc.

5. THE ELECTROMECHANICAL ANALOGY

The electromechanical analogy (E.M.A.) is used in the study of simple oscillatory electric systems, on the basis of some models of elementary mechanic systems and in some cases the more complex discrete mechanic systems are analyzed using analogue electrical networks, considering the formal equivalence between Lagrange's equations and Kirchhoff's laws, as well as the practical possibilities of measurement of the state parameters of electrical circuits. In table 4 is presented the E.M.A. of the basic sizes for the I and II - type analogies.

In the E.M.A., the ideal passive elements that form a mechanical lumped-parameter (discrete) system are represented using analogue symbols of the elements R, L, C specific to electrical lumped-parameter circuits as mentioned by Nedelcu (1978), lacob (1980) and Stanomir (1989).

The ideal active elements (the mechanical sources) are adopted in analogy to the sources specific to electric circuits and are associated a positive sense and polarities which correspond to the positive sign of the mechanical power in the circuit (as shown by Fransua, 1999).

On the basis of this rationing, the ideal passive elements of the mechanical lumped-parameter system, noted R_m , L_m , C_m , as well as the sources of generalized force (Φ_m) or velocity (w_m) are represented using symbols presented in the second part of this paper (as mentioned by Fransua, 1999 and Radulescu, 2005).

When adopting the mechanical scheme one must have in mind the compliance between d'Alembert's principle and Kirchhoff's first law, as well as the correspondence between the passive elements of the two analogue circuits. When drafting the analogue scheme for the circuit corresponding to a mechanic system one can distinguish the following stages:

- 1. The compounding bodies are reduces to material points which correspond to nodes of mechanic network with the velocity in ratio to a standard branch point;
- 2. The elements of circuit are inserted between the nodes;
- 3. The equations of equilibrium of forces (ϕ_{m_k}) are written for every node;
- 4. The mathematical model is solved (the integral differential equations) taking into consideration the initial conditions and the velocity of the node w_j is obtained.

The electromechanical analogy allows solving issues related to vibrations of complex mechanical systems by replacing them with equivalent electrical network, which can be easily studied on the basis of "standard" results obtained in the theory of electrical circuits.

Using this analogy is only possible if the mechanical system studied is linear, if its vibration amplitudes are small enough. It is essential to obtain the correct configuration of the electrical scheme of the vibrating mechanical system, given the following recommendations (as shown by Fransua, 1999; Stanomir, 1989):

- for the analogy of impedances, to a mechanical series assembly corresponds a parallel electrical circuit and vice versa.
- for the analogy in admittances, to a mechanical parallel assembly corresponds a parallel electric circuit and to a mechanic series assembly corresponds a series electric circuit.

Usually, the equivalent electromechanical scheme is determined, which corresponds to the mathematical model, based on which one can determine the mechanical impedance or mechanical mobility.

For example, Fig. 1 presents an elementary mechanical system (autovehicle and trailer) in translation movement (a) and its analogue mechanical scheme (b).

Electrics	Denomination	Magnetism
$\vec{E}(\vec{r};t)$ [V / m]	Strength of the vectorial field	$\vec{H}(\vec{r};t)$ [A/m]
$\vec{D}(\vec{r};t) \ [C/m^2]$	Flux density	$\vec{B}(\vec{r};t)$ [T]
$\vec{p}_{e}[C \cdot m]$	Moment	$\vec{p}_m[Nm/T]$
$\vec{P}_p = d\vec{p}_e / d V$	Polarization / magnetization	$\vec{M} = d\vec{p}_m / dV$
$\vec{C}_{e} = \vec{p}_{e} imes \vec{E}$	Torque	$C_m = \vec{p}_m imes \vec{B}$
$\vec{F}_{e} = \nabla(\vec{p}_{e} \cdot \vec{E})$	Force	$\vec{F}_m = \nabla(\vec{p}_m \cdot \vec{B})$
$\vec{f}_{e} = \rho_{V}\vec{E} - (1/2)E^{2}\nabla\varepsilon \ (\varepsilon'(\tau) = 0)$	Volumetric force	$\vec{f}_m = \vec{J} \times \vec{B} - (1/2)H^2 \Delta \mu \ (\mu'(\tau) = 0)$
$X_{k} = -\frac{\partial W_{e}(q_{0}; x)}{\partial x_{k}}$	Theorem of generalized forces	$X_{k} = -\frac{\partial W_{m}(\varphi; x)}{\partial x_{k}}$
$\vec{T}_n = \vec{E} \left(\vec{D} \cdot \vec{n} \right) - \frac{1}{2} \left(\vec{D} \cdot \vec{E} \right) \vec{n}$	Maxwellian tensions	$\vec{T}_n = \vec{H} \left(\vec{B} \cdot \vec{n} \right) - \frac{1}{2} \left(\vec{H} \cdot \vec{B} \right) \vec{n}$
$\vec{T}_n = \vec{n} \cdot \vec{T}_e$		$\vec{T}_n = \vec{n} \cdot \stackrel{\Rightarrow}{\vec{T}}_m$
ɛ [F / m]	Vacuum permittivity/ permeability	$\mu_0[H/m]$
χ _e	Susceptivity	Χm
$\varepsilon_r = 1 + \chi_e$	Relative permittivity/ permeability	$\mu_r = 1 + \chi_m$
$\varepsilon_{diff} = \varepsilon_0^{-1} D'(E)$	Differential permittivity/ permeability	$\mu_{diff} = \mu_0^{-1} B'(H)$
$\vec{P}_t = \varepsilon_0 \overset{\Rightarrow}{\vec{X}_e} \cdot \vec{E}$	Law of polarization/ magnetization	$\vec{M}_t = \overset{\Rightarrow}{\vec{X}}_m \cdot \vec{H}$
Ρ _p	Permanent polarization/ magnetization	<i>M</i> _p
$u_{em} = \int_{(C)} \vec{E} \cdot d\vec{r}$	Electro / magnetomotive force	$u_{mm} = \int_{(C)} \vec{H} \cdot d\vec{r}$
$\psi = \iint_{(\Sigma)} \vec{D} \cdot d\vec{\sigma}$	Flux	$\phi = \iint_{(\Sigma)} \vec{B} \cdot d\vec{\sigma}$
$\psi^* = \iint_{(\Sigma)} \vec{E} \cdot d\vec{\sigma}$	Flux of the field ($\varepsilon = ct$.)	$\phi^* = \iint_{(\Sigma)} \vec{H} \cdot d\vec{\sigma}$
$V_{e} = V_{e}(\vec{r}; t)$	Scalar potential	$V_m = V_m(\vec{r}; t)$
$\nabla \times \vec{E} = \vec{0}; \ \vec{E} = -\nabla V_{e}$	Irotational field	$ abla imes \vec{H} = \vec{0} ; \vec{H} = -\nabla V_m$
$u_e = V_{e_1} - V_{e_2}$	Voltage / magnetic tension	$u_m = V_{m_1} - V_{m_2}$
$ abla \cdot \vec{D} = 0 \ (q_e = 0)$	Solenoid field	$ abla \cdot \vec{B} = 0$
$w_e = \frac{1}{2}\vec{E}\cdot\vec{D}$	Volumetric density of the energy	$w_m = \frac{1}{2}\vec{H}\cdot\vec{B}$
$W_{e} = \frac{1}{2}q_{e}V_{e}$	Energy in the capacitor/ inductor	$W_m = \frac{1}{2}\phi i$
$\Delta V_{\rm e} + \rho_{\rm V} \varepsilon_0^{-1} = 0 ; \qquad \qquad$	Poisson's equation	$\Delta \vec{A} + \mu \vec{J} = 0 ;$
scalar: $\vec{E} = -\nabla V_{e}$	Potential	vector: $\vec{B} = \nabla \times \vec{A}$
$\rho_{\rm V} = 0 \Longrightarrow \Delta V_{\rm e} = 0$	P.C.: Laplace's equation	$\vec{J} = \vec{0} \Rightarrow \Delta \vec{A} = \vec{0}$

Table 2. The electric - magnetic analogy of parameters

Fig. 2 shows an example of elementary mechanical system in rotary movement (gear box): the cinematic scheme (a) and the analogue calculus scheme (b).

The two schemes include specific notations for the two types of motion, but they can also be written in a generalized form, as shown in Table 1.

Electrostatic field	Electrokinetic field	Magnetic field			
	Differential equation of the field lin	es			
$d\vec{r} imes \vec{E} = \vec{0}$	$d\vec{r} imes \vec{J} = \vec{0}$	$d\vec{r} imes \vec{H} = \vec{0}$			
	Characteristics of the material				
Electric permittivity	Electric conductivity/resistivity	Magnetic permeability/reluctivity			
$\varepsilon = \varepsilon_0 \varepsilon_r [F / m]$	$\sigma = a^{-1} a^{(not)} a^{-1} $	$\mu = \mu_0 \mu_r = v^{-1} [H / m];$			
	$0 - p_{e}, p_{e} - p - p_{0}p_{r}$ [szm]	v - magnetic reluctivity			
	Global energetic relations				
Electrostatic energy	Law of degradation of electric	Magnetic energy			
	energy	$1 \left(\int $			
$W_{e} = \frac{1}{2} \iiint \rho_{V} V_{e} dV + \iint \rho_{s} V_{e} d\sigma$	$W_{i} = \iiint w_{i} dV : w_{i} = \int \vec{E} \cdot \vec{J} d\tau$	$W_m = \frac{1}{2} \iiint A \cdot J dV + \iint \nabla \cdot (A \times H) d\sigma$			
$-((D) (\Sigma))$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} D \end{array} \\ \begin{array}{c} D \end{array} \end{array} $	$-((D) (\Sigma))$			
	(Joule-Lenz)				
	Particular forms of the Maxwell's equ	ations			
Constitutive relations	The electric conduction law	Constitutive relations			
	$\vec{J} = \sigma (\vec{E} + \vec{E}_i)$ (Ohm's law)	$\vec{5} \stackrel{\Rightarrow}{\rightarrow} \vec{1} \vec{1}$			
$D = \varepsilon E + P_p$		$B = \mu \cdot H + \mu_0 M_p$			
$\mathbf{PC} \stackrel{\Rightarrow}{:} \mathbf{a} \rightarrow \mathbf{a} = \mathbf{a} \stackrel{\bullet}{:} \vec{\mathbf{P}} = \vec{0} \rightarrow \vec{\mathbf{D}} = \mathbf{a} \vec{\mathbf{E}}$	$PC: \ E_i = 0 \Rightarrow J = \sigma E \Leftrightarrow E = \rho J$	$\overrightarrow{PC} \xrightarrow{\Rightarrow} \cdots \xrightarrow{at} \overrightarrow{M} \xrightarrow{\vec{O}} \overrightarrow{P} \cdots \overrightarrow{P}$			
$PC: \varepsilon \to \varepsilon = cl, P_p = 0 \Rightarrow D = \varepsilon E$		FC. $\mu \rightarrow \mu = c_1, m_p = 0 \Rightarrow B = \mu H$			
Electric flux law (Gauss's law)	Law of electricity conservation	Magnetic flux law (Gauss's law)			
$(L.F.) \nabla \cdot D = \rho_V \Leftrightarrow$	(L.F.) $\nabla \cdot J = -\dot{\rho}_V \Leftrightarrow$	$(L.F.) \nabla \cdot B = 0 \Leftrightarrow$			
$\Leftrightarrow \iint \vec{D} \cdot d\vec{\sigma} = q_e (I.F.)$	$\iint \vec{J} \cdot d\vec{\sigma} = -\dot{q}_e(t) (I.F.)$	$\Leftrightarrow \iint B \cdot d\vec{\sigma} = 0 (I.F.)$			
(Σ)	(Σ)	(Σ)			
$P.C.: \ \rho_{V} = 0 \Longrightarrow \nabla \cdot \vec{D} = 0(L.F.) \Leftrightarrow$	$P.C.: \ \dot{\rho}_{V} = 0 \Rightarrow \nabla \cdot \vec{J} = 0(L.F.) \Leftrightarrow$				
$\Leftrightarrow \iint \vec{D} \cdot d\vec{\sigma} = 0 (I.F.)$	$\Leftrightarrow \iint \vec{J} \cdot d\vec{\sigma} = 0 (I.F.)$				
(Σ)	(Σ)				
P.C.: the flux	of the field vector through one field tu	be (stationary field)			
$\iint \vec{D} \cdot d\vec{\sigma} = \Psi$	$\iint \vec{J} \cdot d\vec{\sigma} = i$	$\iint \vec{B} \cdot d\vec{\sigma} = \Phi$			
(Σ)	(Σ)	(Σ)			
Law of electrostatic potential	E.Q.S. field:	M.Q.S. field: law of magnetic circuits			
(<i>V_e</i>); irrotational field:	Faraday's law $(ec{v}=0)$	(Ampere's law)			
$\nabla \times \vec{E} = \vec{0} \Rightarrow \vec{E} = -\nabla V_e(L.F.) \Leftrightarrow$	$\vec{a} = \partial \vec{B} (\vec{a} - \vec{a})$	$\nabla \times H = J (D.F.) \Leftrightarrow$			
$\Leftrightarrow \int \vec{F} \cdot d\vec{r} = V_{-} - V_{-} (F)$	$\nabla \times E = -\frac{1}{\partial t} (L.F.) \Leftrightarrow$	$\Leftrightarrow \int \vec{H} \cdot d\vec{r} = \iint \vec{J} \cdot d\vec{\sigma} $ (I.F.)			
$\Rightarrow j = u, = v_{e_1} v_{e_2} (\dots)$	$f = - \partial \Phi$	(C) (Σ)			
	$\Leftrightarrow \int E \cdot dr = -\frac{\partial F}{\partial t} $ (I.F.)	PC: $\vec{J} = 0 \Rightarrow \vec{H} = -\nabla V_m$:			
	PC: $\vec{B} = \vec{0} \Rightarrow \vec{E} = -\nabla V_{e};$	V_m - scalar magnetic potential			
	V ₂ - scalar electric potential				
sual circuit elements (stationary field)					
Electric capacitor:	Electric conductance:	Magnetic permeance:			
$C_{e} = \frac{q_{e}}{U_{e}} : u_{e} = V_{e} - V_{e}$	$G_{\rm e} = \frac{i}{m} = R_{\rm e}^{-1}$; $u_{\rm E} = \int \vec{E} \cdot d\vec{r}$	$\Delta_m = \frac{\Phi_m}{\Phi_m} = R_m^{-1} \cdot \mu_m = \int \vec{H} \cdot d\vec{r}$			
		$u_m \qquad (C)$			
Electric elastance:	Electric resistance:	Magnetic reluctance:			
$\int ds = \int ds = -1 [r - 1]$		$\int ds = \int A$			
$\begin{bmatrix} \mathbf{S}_{\mathbf{e}} = \int_{0}^{\infty} \frac{\mathbf{E} \mathbf{S}}{\mathbf{E} \mathbf{S}} = \mathbf{C}_{\mathbf{e}} \begin{bmatrix} \mathbf{F} \\ \mathbf{S} \end{bmatrix}$	$\pi_{e} = \int_{0} \frac{1}{\sigma S} = G_{e} [\Omega]$	$ \Gamma_m = \int_0^{\infty} \frac{1}{\mu A} = \Lambda_m \left[\frac{Wb}{Wb} \right] $			

Table 3	. The electrostatic-electrokinetic-magnetic analogy

Fig. 1. Example of equivalent scheme for a mechanical system in translation movement

When drafting these schemes, we have used the II - type analogy ($\phi_m \leftrightarrow i$; $w_m \leftrightarrow w_e$) which assures the compatibility of d'Alembert's principle and Kirchhoff's first law. If the I - type analogy would have been used

Fig. 2. Example of equivalent scheme for a mechanical system in rotation movement

 $(\phi_m \leftrightarrow u_e; w_m \leftrightarrow i)$, the two analogue circuits would have had different configurations, because d'Alembert's principle would have been incorrectly associated to Kirchhoff's second law.

Table 4.	The electrom	echanic analogy	of parameters
----------	--------------	-----------------	---------------

Generalised parameters in mechanics			Electric analogy			
I type (Z)			II type (Y)			
Displacement: $q_m(t) = \int_0^t w_m(\tau) d\tau$		Charge: $q_e(t) = -\int_0^t i(\tau) d\tau$			Flux: $\Phi_e = -\int_0^t u_e(\tau) d\tau$	
	Velocity: $w_m = \overset{\circ}{q}_m(t)$		Current:		Voltage: <i>u_e</i> (<i>t</i>)	
	Acceleration: $\ddot{w}_m = \ddot{q}_m$		Velocity of <i>i</i> : <i>i</i> (<i>t</i>)		Velocity of u_e : $\overset{\circ}{u}_e(t)$	
	Mass: м		Inductance: L _e		Capacitance: Ce	
	Stiffness: k_q	١nv	verse of capacitance: C_e^{-1}	l	nverse of inductance: L_e^{-1}	
	Damping coefficient: k_w		Resistance: R _e	Conductance: G _e		
ť	Inertial: $\phi_i(t) = M \dot{w}$	ge	Inductive: $u_L = L_e \dot{i}(t)$	int	Capacitive: $i_{c} = C_{e} u_{e}^{\circ}(t)$	
Effo	Elastic: $\phi_q = k_q q_m$	/olta	Capacitive: $u_{\rm C} = C_{\rm e}^{-1} q_{\rm e}(t)$	curre	Inductive: $i_L = L_e^{-1} \Phi_e$	
	Damping: $\phi_w = k_w w_m$		Resistive: $u_R = R_e i(t)$		Conductive: $i_G = G_e u_e$	
			Irrotational field			
	$ec{\phi}_{m}=- abla U_{m}$	$\vec{E} = -\nabla V_{e}$		$\vec{H} = -\nabla V_m$		
		(Generalized force			
$\boldsymbol{X}_{\boldsymbol{k}} = \vec{\boldsymbol{F}}_{\boldsymbol{j}} \cdot \frac{\partial \vec{r}_{\boldsymbol{j}}}{\partial \boldsymbol{q}_{m_{\boldsymbol{k}}}}$		$X_{k} = + \left(\frac{\partial W_{e}}{\partial x_{k}}\right)_{q_{e}}$			$X_{k} = -\left(\frac{\partial W_{m}}{\partial x_{k}}\right)_{\Phi_{e}}$	
			Stationary characteristic			
$\phi_m = \phi_m \left(w_m \right)$		$u_e = u_e(i)$		$u_m = u_m (\Phi_e)$		
Impulse of the body: $\vec{\mathfrak{I}}(t) = \mathfrak{M} \ \vec{w}$		Flux of the inductor: $\Phi_e = Li$		Charge of the capacitor: $q_e = C_e u_e$		
	Mechanic power: $P_m = \phi_m w_m$	Electric power: $P_e = u_e i$				

Table 4. Continuation

Table 5 and Table 6 give two commonly used mathematical models with generalized (unified) notations corresponding to the previously defined generalized parameters. Table 5 shows the basic features of the linear oscillator with damping and harmonic excitation, seen as a model for the study of systems with concentrated parameters.

The mechanical system with concentrated parameters shows a basic structure which materializes the basic effects (inertial, elastic, dissipative) and is characterized by the constitutive equation that indicates the dependence between a kinematic size (displacement, velocity or acceleration) and an effort size (force or torque); based on this dependency we can identify the mechanical impedance.

The mechanical system with distributed parameters can be one-dimensional or two-dimensional, where waves arise (in particular small oscillations) for which the equations of the mathematical model are linear. The modeling of non-electric systems can be based on electric systems with distributed parameters whose mathematical model contains the telegraph, the second order differential equations with partial derivates which relate the parameters u(t, x) and i(t, x).

Table 6 shows the basic features of systems with distributed parameters, taking into account the two generalized basic sizes involved in relationships (1) and (2), intensive and complementary sizes: e (effort) and f (flow); these sizes can be identified in each of the areas subject to observation in this work (electric, namely, non-electric), so based on the mathematical

model in which they occur, we can obtain the dynamic characteristics in the frequency domain, as mentioned by Olson (1958), lacob (1980) and Stanomir (1989).

The mechanic phenomena specific to continuous material spectrums can be modeled on the basis of the equations of the electromagnetic field, using the calculus of variations and having in view the Lagrange density function and Hamilton's equations. Therefore, Table 6 summarizes the model with distributed parameters, which has a general character, allowing the study of analog phenomena in several fields (electrical, mechanical, hydraulic, acoustic, sonic, etc.).

Table 7 presents the study of a mechanical circuit (R_m , L_m , C_m) compared to the analogue electrical circuit; in both assemblies (series / parallel) are shown two types of analogies (in impedance - analogy type I) and (in admittance - analogy type II), based on the mathematical model in Table 5.

From the above it is confirmed that the base criterion for choosing the right type of analogy is the correspondence between Kirchhoff's theorems and the two base equations which interfere in the description of the analogue (non-mechanic) system. One can observe that the I-type analogy regards Kirchhoff's first theorem and the mechanics equation resulting from Newton's first law (the equilibrium of sizes e). The II-type analogy regards Kirchhoff's second theorem and the mechanics equation which results from Newton's second law (the balance of the sizes f). A particular case is the *electroacoustic analogy* (E.A.A.), which allows modeling the acoustic systems using elementary electric systems. For example, Fig. 3 shows the acoustic (a) and the analogue electric scheme (b) for a classic microphone (as shown by lacob, 1980). The schemes have been adopted considering the II - type analogy ($u_e \leftrightarrow v$; $i \leftrightarrow p_a$) and the notations correspond to those in Table 8. The mathematical model of the scheme corresponds to an oscillatory system without losses, whose scheme is reduced to a series combination ($C_{e_{eq}} + L_e$) connected in parallel to C_{e_3} .

Fig. 3. The mechanical scheme and the analogue electric scheme of the microphone

The E.A.A. is frequently used in electroacoustics (as shown by Stanomir, 1989) where various inhomogeneous converting subsystems interfere, specific to unconventional conversion microdrives.

Table 8 presents the study of a section of acoustic line (pipe) with distributed parameters based on the mechanical-acoustic analogy (Type I - direct, respectively, type II - reverse), obtained from the reference mathematical model from Table 6.

For acoustic systems with distributed parameters the geometric dimensions of the system are comparable to the wavelength λ_u , for which there is a phase shift, due to propagation. When designing technical systems a mechanic-mechanic analogy is sometimes needed, being regarded in some cases also as a similitude. Next, we present an example of mechanic-mechanic analogy.

Parameter	Definition and calculus equations	Other formulae, notations	Resonance values		
Pulsation	Natural: $\omega_0 = (M_m C_m)^{-1/2} = (K_m / M_m)^{1/2}$; pseudo-pulsation: $\omega_p = \sqrt{\omega_0^2 - \delta^2} = \omega_0 \sqrt{1 - \zeta^2}$				
Mechanical resistance (damping factor)	R_m	Damping factor: $\zeta = \frac{R_m}{R_{m_{cr}}} = \frac{\delta}{\omega_0}$	$R_{m_{cr}} = 2\omega_0 M_m$		
Damping coefficient	$\delta = R_m / 2M_m = \zeta \omega_0$		$\delta_{rez} = R_{m_{cr}} / 2M_m \cong \omega_0 \varsigma$		
Driving frequency	ω	$\gamma = \omega / \omega_0$	$\gamma_{rez} = \sqrt{1 - 2\zeta^2}$		
Quality factor	$Q = \frac{\omega_0}{2\delta} = \omega_0 \frac{M_m}{R_m} = \frac{1}{R_m} \sqrt{M_m K_m}$		$Q_0 = \frac{1}{2\zeta}$		
Static displacement	$q_{st} = \phi_0 / K_m = p / \omega_0^2; p = \phi_0 / M_m$	ϕ_0 - amplitude of perturbation	$q_{st} = 2\zeta (q_1)_{\max}$		
	Generalized mathematical m	nodel: $\ddot{q} + 2\delta \dot{q} + \omega_0^2 q = p \sin \omega t$;			
Transito	ory component: $q_t = q_0 e^{-\delta t} \sin(\omega_p + \varphi_0)$	$_{0}$); Permanent component: $q_{p} =$	$q_1 \sin(\omega t - \varphi)$		
Characteristic equation	$\ddot{x} + 2\delta \dot{x} + \omega_0^2 x$	= 0; solution: $x_{1,2} = -\delta \pm \sqrt{\delta^2 - \epsilon}$	v_0^2		
Amplitude	$q_{1} = \frac{p}{\sqrt{\left(\omega_{0}^{2} - \omega^{2}\right)^{2} + \left(2\delta\omega\right)^{2}}}$	$q_1 = \frac{q_{st}}{\sqrt{\left(1 - \gamma^2\right)^2 + 4\zeta^2 \gamma^2}}$	$(q_1)_{\max} = \frac{q_{st}}{2\zeta\sqrt{1-\zeta^2}} \cong$ $\approx q_{st}/2\zeta = p/2\delta\omega_0$		
Phase	$\varphi = \arctan \frac{2\delta\omega}{\omega_0^2 - \omega^2}$	$\varphi = \operatorname{arctg} \frac{\gamma}{(1 - \gamma^2)Q}$	$\varphi_{\text{rez}} = \arctan\left[\sqrt{\zeta^{-2} - 2}\right]$		
Dynamic amplification factor	$\xi = \left q_1 / q_{st} \right = \left 1 - \gamma^2 \right ^{-1}$	$\xi = \frac{1}{\sqrt{(1 - \gamma^2)^2 + 4\gamma^2 \zeta^2}}$	$\xi_{rez} = \frac{1}{2\xi\sqrt{1-\zeta^2}} \cong Q_0$		
Logarithmic decrement	thmic ment $\delta_1 = \ln(q_k / q_{k+1}); \ \delta_1 = 2\pi\zeta / \sqrt{1-\zeta^2} \cong 2\pi\zeta(\zeta - 1); \ \pi / \delta_1 = 1/2\zeta$ - over amplitude coefficient				
Dynamic elastic constant	$\underline{K}_{D} = \underline{\phi} / \underline{Z} = K_{m} - M_{m}\omega^{2} + j$	$\omega K_m = j \omega \underline{Z}_m; \ q_1 = z ; z = x + jy;$	$\underline{Z}_m = R_m + jX_m$		
Energy	$W = \frac{2\pi^2 p^2 \omega^2}{\omega_0^4 \left[(1 - \gamma^2)^2 + \gamma^2 Q^{-2} \right]}$	$\frac{W}{W_{rez}} = \frac{\gamma^2}{\left[Q^2(1-\gamma^2)+\gamma^2\right]}$	$W_{rez} = \frac{2\pi^2 Q_0}{\omega_0^2}$		

Table 5	The basic	: features	of the	linear	oscillator	(for	SC	P)
		, icului co		mour	obolinator		0.0.	/

Quantities;		Definitions, formulas, mathematical models and their solutions						
ch: C	aracteristic constants	C	General case (<i>R</i> '; <i>L'</i> ; <i>C'</i> ; <i>G</i> ′ ≠ 0)	Without perditance $(G' = 0)$	Without losses (R' = G' = 0)	Without distortion		
stants	Wave period	<i>T</i> ₀ =	$=\omega_0^{-1}=\frac{L'}{R'}=\frac{1}{2\delta_1}; \ \omega_0=2\pi f_0$					
Cons	Damping coeff.	$\delta = -$	$\frac{R'}{2H'}; \ \delta_1 = \frac{G'}{2C'}; \ \delta_2 = \frac{R'}{H'} = 2\delta$	$\delta_1 = 0$	$\delta = \delta_1 = 0$	$\delta = \delta_1 = \frac{\delta_2}{2}$		
т	ime: $\delta_3 = \frac{x}{a}$	[s]; x = L	$\Rightarrow T_p = \frac{L}{a}$; wave propagation speed: a	$\mathbf{a} = \frac{1}{\sqrt{H'C'}}; \mathbf{a}_0 = \frac{1}{\sqrt{H'C'}}$	$\frac{1}{2}$; wavelength: $\lambda_u = 0$	$=aT_0=\frac{a}{f_0}$		
gation tor	Operatio- nal	γ	$f(s) = \sqrt{(R' + H's)(G' + C's)}$	$\gamma(s) = \sqrt{(R' + H's)C's}$	$\gamma(s) = s\sqrt{H'C'} = \frac{s}{a}$	$\gamma(\mathbf{S}) = \mathbf{S} + \frac{\delta_2}{\mathbf{a}}$		
Propa fac	Complex	$\gamma(j\omega) = \lambda$	$\sqrt{(R'+H'j\omega)(G'+C'j\omega)}; \gamma = \delta + j\omega$	$\gamma(j\omega) = = \sqrt{-H'C'\omega^2 + j\omega R'C'}$	$\gamma(j\omega)$ =	$=\frac{j\omega}{a}$		
lance	Operatio- nal	$Z_c(s) = \sqrt{1}$	$\overline{(R'+H's)(G'+C's)} = Z_{c_0}\sqrt{\frac{s+2\delta}{s+2\delta_1}}$	$Z_{c} = Z_{c_0} \sqrt{1 + \frac{2\delta}{s}}$	$Z_c \rightarrow$	Z _{c0}		
Imped	Complex	:	$\underline{Z}_{c}(j\omega) = \frac{R' + j\omega H'}{\sqrt{R'G' - C'H'\omega^{2} + j\omega(R'G')}}$	$\frac{1}{C'+H'G'}; \ Z_{c_0} = \sqrt{\frac{H'}{C'}} =$	$=\frac{\rho a_0}{s}$ - wave imped	dance		
Loa in	d (terminal) npedance	$\underline{Z}_{c} = R_{s}$	+ $jx_s; \ \underline{Z}_c = \underline{Z}_s \Longrightarrow R_s = \frac{1}{\sqrt{2C'}}\sqrt{H'}$	$+\sqrt{(H')^2 + \left(\frac{R'}{\omega}\right)^2}$; $X_s =$	$=\frac{1}{\sqrt{2C'}}\sqrt{-H'}+($	$\overline{H')^2 + \left(\frac{R'}{\omega}\right)^2}$		
nodel	Coupled eq.		$\frac{\partial(\Delta e)}{\partial x} = -\left[R'\Delta f + H'\frac{\partial(A)}{\partial x}\right]$	$\left[\frac{\Delta f}{\partial t}\right]; \frac{\partial(\Delta f)}{\partial x} = -\left[R'\Delta e + \right]$	$+H'\frac{\partial(\Delta e)}{\partial t}$			
Mathematical r	Decoupled eq.	$\frac{\partial^{2}(\Delta e)}{\partial x^{2}} = H'C'\frac{\partial^{2}(\Delta e)}{\partial t^{2}} + (R'C' + G'H')\frac{\partial(\Delta e)}{\partial t} + R'G'\Delta e$ $\frac{\partial^{2}(\Delta f)}{\partial x^{2}} = H'C'\frac{\partial^{2}(\Delta f)}{\partial t^{2}} + (R'C' + G'H')\frac{\partial(\Delta f)}{\partial t} + R'G'\Delta f$						
Syst	temic model		$\frac{d^2(\Delta e)}{dx^2} - (R' + H's)(G' + C's)\Delta e = 0;$ $\frac{d^2(\Delta f)}{dx^2} - (R' + H's)(G' + C's)\Delta f = 0$					
General $ \frac{\overline{\Delta e}(s,x) = \overline{C_1}e^{\gamma x} + \overline{C_2}e^{-\gamma x}}{\overline{\Delta f}(s,x) = \overline{C_1}e^{\gamma x} + \overline{C_2}e^{-\gamma x}} $								
Solutio	Final	$\Delta e(s,x) = \frac{1}{sh(\gamma L)} \left\{ \overline{\Delta e_2 sh(\gamma x)} + \overline{\Delta e_1 sh[\gamma(L-x)]} \right\}$ $\Delta f(s,x) = \frac{1}{sh(\gamma L)} \left\{ \overline{\Delta f_2 sh(\gamma x)} + \overline{\Delta f_1 sh[\gamma(L-x)]} \right\}$						
Ma	atrix input -	Operational	$\begin{bmatrix} \Delta \mathbf{e}(j\omega) \\ \Delta \mathbf{f}(j\omega) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ \frac{\Delta \mathbf{f}}{2} & 1 \end{bmatrix}$	$\begin{bmatrix} ch(\gamma x) & \underline{Z}_{c}sh(\gamma x) \\ \frac{1}{\underline{Z}_{c}}sh(\gamma x) & ch(\gamma x) \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\left[\frac{\Delta \mathbf{e}_{1}(j\omega)}{\Delta f_{1}(j\omega)}\right];$			
output complex relationship		Complex	$\begin{bmatrix} \Delta \mathbf{e}_{2}^{*}(j\omega) \\ \underline{\Delta \mathbf{f}_{2}^{*}}(j\omega) \end{bmatrix} = \begin{bmatrix} \mathbf{ch}(\gamma(j\omega)L) \\ [\underline{Z}_{c_{0}}(j\omega)/\underline{Z}_{c_{0}}(j\omega)] \end{bmatrix}$) $[\underline{Z}_{c}(j\omega) / \underline{Z}_{c_{0}}(j\omega)]$ $(j\omega)]sh(\gamma(j\omega)L) ch(\gamma(j\omega)L)$	$p)]sh(\gamma(j\omega)L) \left[\Delta e \\ \gamma(j\omega)L) \right] \left[\Delta f \\ \Delta f$	$\left[\frac{\hbar}{2}(j\omega)\right]$		

Table 6. The basic features of mechanical systems with distributed parameters (for S.D.P.)

		Mechanical system / device	Type of analogy	Analogue electric circuit
lectric circuit	Physical	$M_m f_2$ f_1 C_m f_2 f_3 R_m	Type I (direct) - in impedance $\underline{Z}_{m} \leftrightarrow \underline{Z}_{e}$ $f \leftrightarrow u; v \leftrightarrow i; R_{m} \leftrightarrow R_{e};$ $M_{m} \leftrightarrow L_{e}; K_{m}^{-1} = C_{m} \leftrightarrow C_{e}$	$\begin{array}{c} R_{a} & i \\ L_{a} \\ \mu_{R} \\ \mu_{L} \\ \mu_{C} \end{array} \\ \downarrow L_{c} \\ \mu_{C} \\ \mu_{C}$
/ device and of the analogue el	Mathematical	$M_{m}\dot{v}(t) + R_{m}v(t) + \frac{1}{C_{m}}\int_{0}^{t}v(\tau)d\tau = f_{k}$ $v(t) = \frac{F}{Z_{m}}\cos(\omega t + \varphi);$ $Q_{m} = \frac{M_{m}}{R_{m}}\omega_{0} = \frac{1}{\omega_{0}R_{m}C_{m}}$ $\varphi = \arctan\left[\frac{(\omega / \omega_{0})^{2} - 1}{\omega R_{m}C_{m}}\right]$	Type II (inverse) - in admittance $f \leftrightarrow i; v \leftrightarrow u; R_m \leftrightarrow G_e = R_e^{-1};$ $M_m \leftrightarrow C_e; K_m^{-1} = C_m \leftrightarrow L_e;$ $\underline{Z}_m \leftrightarrow \underline{Y}_e$	$L_{e}i(t) + R_{e}i(t) + \frac{1}{C_{e}}\int_{0}^{t}i(\tau)d\tau = u_{k}$ $i(t) = \frac{U}{Z_{e}}\cos(\omega t + \varphi);$ $Q_{m} = \frac{L_{e}}{R_{e}}\omega_{0} = \frac{1}{\omega_{0}R_{e}C_{e}}$ $\varphi = \arctan\left[\frac{(\omega / \omega_{0})^{2} - 1}{\omega R_{e}C_{e}}\right]$
mechanic system	Physical	$v = \mathbf{\dot{x}} \underbrace{f}_{M_m} \underbrace{v_1 v_2 v_3}_{R_m C_m}$	Type I (direct) - in impedance $\underline{Z}_{m} \leftrightarrow \underline{Z}_{e}$ $f \leftrightarrow u; v \leftrightarrow j; R_{m} \leftrightarrow R_{e};$ $M_{m} \leftrightarrow L_{e}; K_{m}^{-1} = C_{m} \leftrightarrow C_{e}$	$\begin{array}{c} i \\ i_1 \\ u_{(t)} \\ R_e \\ R_e \\ L_e \\ C_e \end{array}$
Model of the	Mathematical	$C_{m} \stackrel{\bullet}{f}(t) + G_{m} f(t) + \frac{1}{M_{m}} \int_{0}^{t} f(\tau) d\tau = v_{k}$ $f(t) = Z_{m} V \cos(\omega t + \varphi)$ $\varphi = \operatorname{arctg} \left[\frac{(\omega / \omega_{0})^{2} - 1}{\omega M_{m}} R_{m} \right]$	$\underline{Z} = R + j \left(\omega L - \frac{1}{\omega C} \right) \text{ (impedance)}$ $\underline{Y} = G + j \left(\omega C - \frac{1}{\omega L} \right) \text{ (admittance)}$ $\omega_0 = (LC)^{-1/2} \text{ - natural frequency}$	$C_{e} \overset{\bullet}{u}(t) + G_{e}u(t) + \frac{1}{L_{e}} \int_{0}^{t} u(\tau) d\tau = v$ $u(t) = Z_{e}I \cos(\omega t + \varphi)$ $\varphi = \operatorname{arctg}\left[\frac{(\omega / \omega_{0})^{2} - 1}{\omega L_{e}}R_{e}\right]$

Table 7. Comparison between a mechanical system, an electric series circuit and an electric parallel circuit

Table 8. The mathematical model of an acoustic line with D.P., established using the electroacoustic analogy

Domain			Type of oscillating - harmonic system			
Туре			Mechanical system with longitudinal motion	Acoustic system with constant section (<i>S=ct</i> .)	Uniform one-dimensional acoustic system	
Type-I-analogy (in impedance)	Physical model		$+ \underbrace{\begin{array}{c} R'_m; M'_m \\ F \end{array}}_{f} \underbrace{\begin{array}{c} v \\ G'_m \end{array}}_{G'_m} \underbrace{\begin{array}{c} x \\ G'_m \end{array}}_{F}$	$+ \underbrace{\begin{array}{c} R'_{a}; M'_{a} \\ P \\ - \end{array}}^{R'_{a}; M'_{a}} \underbrace{\begin{array}{c} C'_{a} \\ G'_{a} \end{array}}^{x}$	$+ \underbrace{\begin{array}{c} R'_{s}; M'_{s} \\ p \end{array}}_{p} \underbrace{\begin{array}{c} v \\ G'_{s} \end{array}}_{G'_{s}} \underbrace{\begin{array}{c} x \\ g'_{s} \end{array}}_{T}$	
	model	Equations	$\frac{\partial f}{\partial x} + R'_m v + M'_m \frac{\partial v}{\partial t} = 0$	$\frac{\partial p_a}{\partial x} + R'_a q + M'_a \frac{\partial q}{\partial t} = 0$	$\frac{\partial p}{\partial x} + R'_{s}v + M'_{s}\frac{\partial v}{\partial t} = 0$	
	Mathematical	System parameters	$M'_{m} = \rho S; C'_{m} = (ES)^{-1}$ $Z_{u} = \sqrt{\frac{R'_{m} + j\omega M'_{m}}{G'_{m} + j\omega C'_{m}}}$ $Z_{u}^{0} = \rho cS; c = \sqrt{\frac{E}{\rho}}$	$M'_{a} = \frac{\rho}{S}; C'_{a} = \frac{S}{E};$ $Z_{u} = \sqrt{\frac{R'_{a} + j\omega M'_{a}}{G'_{a} + j\omega C'_{a}}}$ $Z_{u}^{0} = \frac{\rho c}{S}; c = \sqrt{\frac{E}{\rho}}$	$M'_{s} = \rho; C'_{s} = E^{-1};$ $Z_{u} = \sqrt{\frac{R'_{s} + j\omega M'_{s}}{G'_{s} + j\omega C'_{s}}}$ $Z_{u}^{0} = \rho c; c = \sqrt{\frac{E}{\rho}}$	

Table 8. Continuation

Type- II-analogy (in admittance)	Physical model		$+ \underbrace{C'_m; G'_m}_{v \downarrow} \underbrace{f}_{R'_m} \underbrace{M'_m}_{R'_m} \underbrace{x}_{R'_m}$	$+ \underbrace{C'_{a}; G'_{a}}_{q} \xrightarrow{p} \underbrace{M'_{a}}_{R'_{a}} \xrightarrow{x}_{A'_{a}}$	$+ \underbrace{C'_{s}; G'_{s}}_{v} \underbrace{\xrightarrow{p} M'_{s}}_{R'_{s}} \underbrace{\xrightarrow{x}}_{r'_{s}}$			
	Mathematical model	Equations	$\frac{\partial V}{\partial x} + G'_m f + C'_m \frac{\partial f}{\partial t} = 0$	$\frac{\partial q}{\partial x} + G'_{a}p + C'_{a}\frac{\partial p}{\partial t} = 0$	$\frac{\partial \mathbf{v}}{\partial x} + \mathbf{G}'_{s}\mathbf{p} + \mathbf{C}'_{s}\frac{\partial \mathbf{p}}{\partial t} = 0$			
		System parameters	$M'_{m} = \rho S; C'_{m} = (ES)^{-1};$ $Z_{u} = \sqrt{\frac{G'_{m} + j\omega C'_{m}}{R'_{m} + j\omega M'_{m}}}$ $Z_{u}^{0} = \frac{1}{\rho cS}; c = \sqrt{\frac{E}{\rho}}$	$M'_{a} = \frac{\rho}{S}; C'_{a} = \frac{S}{E};$ $Z_{u} = \sqrt{\frac{G'_{a} + j\omega C'_{a}}{R'_{a} + j\omega M'_{a}}}$ $Z_{u}^{0} = \frac{S}{\rho c}; c = \sqrt{\frac{E}{\rho}}$	$M'_{s} = \rho; C'_{s} = E^{-1};$ $Z_{u} = \sqrt{\frac{G'_{s} + j\omega C'_{s}}{R'_{s} + j\omega M'_{s}}}$ $Z_{u}^{0} = \frac{1}{\rho c}; c = \sqrt{\frac{E}{\rho}}$			
	ρ - density; E - Young's modulus; ρ - acoustic pressure; q - acoustic flow; v - velocity of the medium							

REFERENCES

- BUCULEI, M., RADULESCU, M. (1993) Hydraulic Drives and Automations. University of Craiova.
- FRANSUA, Al. (1999). Conversia electromecanica a energiei. Technics Publ. House, Bucharest.
- HACKENSCHMIDT, M. (1972). Strömungsmechanik, VEB Deutscher Verlag fur Grünindustrie, Leipzig.
- IACOB, C. (1980). Dicționar de mecanică, EDP Bucharest.
- KINSLER, L.E. (1962). Fundamentals of acoustics. Wiley & Sons, New York.
- LEVI, E., PANZER, M. (1966). Electromechanical Power Conversion. McGrow-Hill Book Company, New York.
- MOCANU, C.I. (1979). Teoria circuitelor electrice, EDP, Bucharest.
- NEDELCU, V.N. (1978). Teoria conversiei electromecanice. Technics Publishing House, Bucharest.
- OLSON, H.F. (1958). Dynamical analogies, Princeton, D. van Nostrand Comp.
- RADULESCU, M. (2005). The Electrohydromechanic Analogy, ISIRR8 Szeged.
- STAN, M.F. (2005). Tratat de inginerie electrica, "Bibliotheca" Publishing House, Bucharest.
- STANOMIR, D. (1982). The Physical Theory of Electromechanical Systems. The Academy Publishing House, Bucharest.

- STANOMIR, D. (1989). Teoria fizică a sistemelor electromecanice, The Acad. Publishing House, Bucharest.
- ŞORA, C. (1982). Bazele electrotehnicii. EDP, Bucharest.

CORRESPONDENCE

Mircea RADULESCU Assist. Prof. University of Craiova Faculty of Mechanics 13, Alexandru Ioan Cuza Street 060042 Craiova, Romania radulescumrc@yahoo.com