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AN EXTENSION OF THE ELECTROMECHANICAL ANALOGY IN THE DOMAIN 
OF HYDROSTATIC TRANSMISSIONS 

Part I. THE ELECTROMAGNETIC AND ELECTROMECHANICAL ANALOGIES 

Mircea RADULESCU 
ABSTRACT. The paper aims to expand the electromechanical analogy in other domains of technology: hydraulic, 
pneumatic, acoustic, sonic, and even in thermodynamics.  
In addition to the similarity of the equations and mathematical models, in the domain of fluidic systems we have 
highlighted the analogy of the circuit elements and some basic structures, for which the equivalent schemes are 
given. Analogy tables are presented, including the important sizes, units, symbols and generalized mathematical 
models applicable in all domains above and the advantages of the analogy and its limits of application are 
highlighted. 

KEYWORDS. Electromechanic / hydraulic analogy, generalized parameters, electric / mechanical / hydraulic 
resistance / inductance / capacity / impedance, analogy of sizes / equations, limits of the analogy. 

NOMENCLATURE 
Symbol                Description 

A
r

; = ∇×
r r
B A  electrodynamic vector potential 

−Ω 1[ ]eB  electric susceptance 

2[ / ]LB N m  bulk modulus of elasticity of liquid 

−= 1 [ ]e eC S F  electric capacity / elastance 

  f Hz  circular frequency 

= ∆ −/ [ ]HI H L hydraulic slope 

DK  
diffusion coefficient in 
electrochemistry 

3[ ]HK m  flow module in hydrodynamics 

[ ]eL H  electric inductance 

−2 5[ ]HM s m  hydraulic module in hydrodynamics 

−  n  
nondimensional exponent of HR -  

hydraulic resistance to motion 

∆ 3; [ / ]Q Q m s volumetric flow/leakage flow 

∆ = −; i ep p p p  pressure; drop/jump pressure 

−= Ω1 [ ]e eR G  electric resistance / conductance 

[ ]ν −= −1Re vd Reynolds number in hydraulic pipes 

5; ' [ / ]LR R Ns m
linear/linearised hydraulic resistance 
to fluid motion 

+

 
 
  

3 2

n

N n

Ns
R

m
 

non-linear hydraulic resistance to 
motion of fluid 

s [m] curvilinear coordinate; string deviation  
T [K] thermodynamic temperature 
U [Nm] scalar potential of the force 

3[ / ]gV m rot  
Basic geometrical volume of rotary 
hydraulic volumic machines 

 V, ∆V  [m
3
] volume; finite fluid volume variation  

ω ω   0; /rad s  angular/natural frequency 

= +z x jy  complex number ( 1)j = −  

θ λ( ; ; )R  spatial polar coordinates 

τ  apparent power mass density 

ABBREVIATIONS 
P.C. particular case 
B.C.; I.C. boundary conditions/initial conditions 
S.C.P.; S.D.P. lumped/distributed parameters system 
E.S.F.; M.S.F. electric/magnetic quasi-stationary field 
L.F.; I.F. local (differential)form / integral form 
O.D.E.; P.D.E. ordinary/partial differential equations 
E.Q.S.;M.Q.S. electric/magnetic quasistationary 

1. INTRODUCTION 

The analogy is one of the basic methods used to 
research various areas of physics-specific 
phenomena, being based on the formal identity of 
mathematical models that describe the original 
phenomenon and the similar phenomenon. Therefore, 
the analogy method allows solving problems in a 
particular domain, using the results from another field, 
where the phenomena of the two domains have the 
same mathematical model (are analogue).  

The scale of analogy is the constant ratio between the 
values of the two similar sizes, which belong to the 
two domains and must verify the (formally identical) 
mathematical models which express the conduct of 
the two phenomena. The analogy is partial, if only 
some of the quantities involved in the description of 
phenomena are analogue. During the dynamic 
modeling of complex systems, difficulties arise, 
regarding their direct analysis, so that sometimes the 
application of methods of study and indirect analysis 
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are required, allowing the complete knowledge of the 
studied phenomenon, based on observations and 
experimental research performed on similar models. 

The biunivocal correspondence between the original 
phenomenon and its model allows that, on the basis 
of rules and assumptions established a priori, the 
variables that can not be assessed on the primary 
(original) system can be determined on the analog 
model; based on information obtained from the model, 
some conclusions can be drawn on the original 
behavior. Frequently, the original system (a 
mechanical, acoustic, hydraulic, pneumatic or thermal 
system) is studied on an analog electric model, this 
providing the research of the phenomenon on an 
equivalent electric or electronic circuit, which allows 
the processing of results and the implementation of 
solving methods from the electric field in the area of 
interest. Similar models in the electric field are 
preferred, as their structure and operation have been 
improved based on results obtained in the theory of 
electrical circuits. In these circumstances, the analogy 
can be a process of synthesis of complex non-electric 
circuits, based on synthesis algorithms specific to 
electric or electronic circuits. 

A detailed approach of the studies regarding the 
analogy is shown by Olson (1958), Kinsler (1962), 
Levi (1966), Hackenschmidt (1972), Stanomir (1989), 
and Fransua (1999). 

2. REQUIREMENTS OF THE 
ELECTROMECHANICAL ANALOGY  

The electromechanic analogy has the advantage that 
it can easily adapt to the following requirements 
specific to the study of physical phenomena by 
modeling (as shown by Stanomir, 1982). 

1. The model should ensure a broad representation 
of the original, that is to allow highlighting its 
unknown properties; they must be better known 
than the ones of the original, or must be easily 
experimentally modeled; 

2. The bonds of the non-electric system must be 
holonome, scleronome and linear and the system 
must have a linear equivalent graph and only 
elementary one-port structures. 

3. The specific dynamic process of the original 
system to be studied on the analog model will 
strictly collapse (limit) to the domain of interest; 

4. Based on the scheme of the original model, we 
can establish the equivalent electrical scheme; for 
example, the series / parallel connection of 
elements that goes into the original, must be 
replaced with similar elements of circuit, connected 
properly, in series / parallel; 

5. The physical character of a quantity of the original 
system must be maintained to the study on the 
analogue system; for example, the hydraulic 
potential must have as analogous the electric 
potential, etc. 

6. Any analogy must respect the principle of 
conservation of energy, so that the condition of 
compatibility from an analogy to the other derived 
from it, is to be a biunique correspondence of 
powers for the two domains of the similar 
phenomena; for this reason, the equations from 
the mathematical model of the analog electrical 
circuit must be isomorphic with the mathematical 
model equations of the studied (original) system, 
as defined in the biunique correspondence. 

The analogy of non-electrical elements and circuits 
(mechanic, acoustic, thermic, hydraulic, pneumatic, 
sonic etc.) with the electrical ones allows the modeling 
of the original system, based on some active circuit 
elements (sources) connected to passive elements 
(resistances, inductances, capacities, perditances) 
through specific junction elements. Since the analogy 
of sizes and mathematical models also aims an 
analogy of the physical laws specific to analogue 
circuits (systems), some theorems and laws of the 
electric disciplines can be properly translated into laws 
and theorems expressing the phenomena of the 
domain of interest (the original domain); example: 
Kirchhoff’s theorems, Ohm’s law, the law of 
electromagnetic induction, the transfiguration 

theorem, superposition theorem, Y↔∆ transfiguration 
etc. (as shown by Mocanu, 1979, Şora, 1982, 
Stanomir, 1989). 

3. GENERALIZED PARAMETERS 

The need to extend the electromechanical analogy to 
other non-electric domains, which derive from 
mechanics, becomes obvious with the approach of 
interdisciplinary researches with applicability in 
science vanguard fields like space flight engineering, 
mecatronics etc. There is also a need to establish a 
common language based on the essential role of the 
extended analogy between the domains 
corresponding to physical systems that aim the 
interdisciplinary science objectives. 

The degree of generality of the analogy can be 
significantly increased if the quantities involved in the 
description of the phenomena are brought to 
dimensionless forms and if a common language, with 
general validity is adopted. In order to highlight the 
domain of application for some extended analogies, 
generalized power variables are introduced: f (flow) 
and e (effort), and on this basis we can define the 
generalized energy variables (as shown by Buculei, 
1993, Rădulescu, 2005). 

We can generalize some non-electric sizes, similar to 
those associated with passive circuit elements 
(resistances, inductances, capacities, perditances 
etc.); these quantities are introduced taking into 
account the analogy of some basic laws from the 
disciplines with non-electric profile, with laws and 
equations of circuit and electrical machines theory. 
Table 1 gives a generalization of the basic parameters 
that characterize some systems/devices and the 
elements of machines and circuits. 
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Table 1. Generalized parameters 

 Parameters 

G
e
n
e
ra

l 

Displacement: ( ) ( ) ( )τ τ= =∫
0

, 0 0

t

q t f d q  

Pulse: ( ) ( ) ( )τ τℑ = ℑ =∫ , 0 0

t

e

t e d  

Generalized power: = = Π   P ef W ; Generalized energy: ( ) ( ) ( )τ τ= =   ∫
0

, 0 0

t

E t P d E J  

Action: ( ) ( ) ( )= ℑ   A t q t t J ; Impedance: −= = + = Ω = −  
1/ ; 1Z e f R jX Y j  

Admittance: − = − = Ω
 

1Y G jB S  

M
e
c
h
a
n

ic
a
l 

Displacement: 
ϕ

 −   
= 

−   

, ( . .)

, ( . .)
m

x m stroke length for linear hydraulic volumic machines L M
q

rad angle for rotary hydraulic volumic machines R M
 

Velocity: 
ω ϕ

 = −   
= 

= −   

&

&

/ , . .

/ , . .

v q m s linear velocity of the mobile equipment of the machine L M
w

rad s angular velocity of the rotative parts of the machine R M
 

Effort: φ
 −   

= 
−   

, . .

, . .

F N force reduced to the stroke of the machine L M

M Nm torque reduced to the rotor axis of the machine R M
 

Mass: 

 −  
=    −  

2

, . .

, . .

m kg mass reduced to the stroke axis L M

J Nm s momentum of gyration reduced to the rotor axis R M
M  

Damping constant :
ω

 − −   
= 

− −   

/ . .

. .
( )

v
w

m

k Ns m viscous friction constant L M
k

k Nms viscous friction constant R M
R

 

Mechanical stiffness: 
ϕ

φ  −  
= = 

−   

/ , , . .

/ , , . .

x
q

k N m elastic constant for linear deformations L Md
k

dq k Nm rad elastic constant for angular deformations R M
 

Elementary work: δ φ δ= ⋅   L q J ; Overall energy: ( )= + = +   
2 21

2
c p mW W W w K q JM  

H
y
d
ra

u
lic

 

Geometric capacity: 

π   − −
  

= 
  −
 

3

3
1 2

/ 2 / , . .

/ , . .

g gV m rad V basic geometricvolume R M
K

A or A m m the pistonareaof theactivechamber L M
 

Hydraulic resistance to motion (friction): 

( ) ( )
( ( )+

 <∆ 
= = 

∆ ∈ > 

5

3 2

[ / ] , Re Re

[ / ]; 1;2 , Re Re

L cr
H n n

N cr

R Ns m linear resistanced p
R

Q R Ns m n nonlinear resistance
 

Hydraulic leakage conductance:  = ∆
 

5/ /HG Q p m N  

Hydraulic resistance to acceleration (hydraulic inertance/inductance): 

 = ∆ =
 

�
2 5/ /HL p Q H Ns m ; Hydraulic mobility: −  =

 
1 5 2/H HM L m Ns  

Hydraulic capacity:  = ∆
 

�
5/ /HC Q p m N ; 

Hydraulic resistance to deformation / hydraulic capacity: −  =
 

1 5/H HD C N m  

Hydraulic stiffness: 
φ −

=
∂  = ⋅

 ∂
2

0h QR Nm rad
q

 

Hydraulic compliance: − − −Λ = =2 1 1 1/ [ ]h H hC K R N m rad  
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4. THE ELECTRIC / MAGNETIC ANALOGY 

Table 2 shows the analogy between the equations of 
the electric steady field and the ones of the magnetic 
field. Most of the sizes and definition relationships 
have the same shape in both domains (volumic 
density of the energy and forces, stored energy, flux / 
circulation of the fields, generalized forces etc.). Most 
laws and theorems are also similar (Kirchhoff’s 
theorems, the constitutive relationships, the 
uniqueness and superposition theorems etc.), as 
shown by Levi (1966) and Şora (1982). 

Table 3 presents the summarized analogy by 
comparing the definitions and properties of the 
electrostatic, electrokinetic and magnetic fields. For 
particular cases (P.C.) we have assumed the three 
mediums are linear, isotropic and homogenous. In this 
case there is also a similarity between some 
definitions and laws of the three domains (as 
mentioned by Stan, 2005). 

The analogy between the stationary electric and 
magnetic fields can help solving some theoretical and 
experimental problems regarding the study of electric 
circuits using already known results in electrostatics / 
magnetostatics or vice versa. A good example would 
be determining some electrostatic characteristics 
using experimental models in electro-kinetics using 
electrolytic tanks or electroconductive paper. When 
choosing the physical model one must take into 
consideration the condition that the two analogue 
models have similar configurations. 

The previous observations mentioned prove their 
utility mainly in the didactic field and mostly in 
interdisciplinary practical courses (electromechanics, 
magnetohydrodynamics, mecatronics, robotics etc. 

5. THE ELECTROMECHANICAL ANALOGY 

The electromechanical analogy (E.M.A.) is used in the 
study of simple oscillatory electric systems, on the 
basis of some models of elementary mechanic 
systems and in some cases the more complex 
discrete mechanic systems are analyzed using 
analogue electrical networks, considering the formal 
equivalence between Lagrange’s equations and 
Kirchhoff’s laws, as well as the practical possibilities of 
measurement of the state parameters of electrical 
circuits. In table 4 is presented the E.M.A. of the basic 
sizes for the I and II - type analogies. 

In the E.M.A., the ideal passive elements that form a 
mechanical lumped-parameter (discrete) system are 
represented using analogue symbols of the elements 
R, L, C specific to electrical lumped-parameter circuits 
as mentioned by Nedelcu (1978), Iacob (1980) and 
Stanomir (1989). 

The ideal active elements (the mechanical sources) 
are adopted in analogy to the sources specific to 
electric circuits and are associated a positive sense 
and polarities which correspond to the positive sign of 
the mechanical power in the circuit (as shown by 

Fransua, 1999). 

On the basis of this rationing, the ideal passive 
elements of the mechanical lumped-parameter 
system, noted Rm, Lm, Cm, as well as the sources of 
generalized force (Φm) or velocity (wm) are represen-
ted using symbols presented in the second part of this 
paper (as mentioned by Fransua, 1999 and 
Radulescu, 2005). 

When adopting the mechanical scheme one must 
have in mind the compliance between d’Alembert’s 
principle and Kirchhoff’s first law, as well as the 
correspondence between the passive elements of the 
two analogue circuits. When drafting the analogue 
scheme for the circuit corresponding to a mechanic 
system one can distinguish the following stages: 

1. The compounding bodies are reduces to material 
points which correspond to nodes of mechanic 
network with the velocity in ratio to a standard 
branch point; 

2. The elements of circuit are inserted between the 
nodes; 

3. The equations of equilibrium of forces (φ
km ) are 

written for every node; 

4. The mathematical model is solved (the integral - 
differential equations) taking into consideration the 
initial conditions and the velocity of the node wj is 
obtained. 

The electromechanical analogy allows solving issues 
related to vibrations of complex mechanical systems 
by replacing them with equivalent electrical network, 
which can be easily studied on the basis of “standard” 
results obtained in the theory of electrical circuits. 

Using this analogy is only possible if the mechanical 
system studied is linear, if its vibration amplitudes are 
small enough. It is essential to obtain the correct 
configuration of the electrical scheme of the vibrating 
mechanical system, given the following 
recommendations (as shown by Fransua, 1999; 
Stanomir, 1989): 

• for the analogy of impedances, to a mechanical 
series assembly corresponds a parallel electrical 
circuit and vice versa. 

• for the analogy in admittances, to a mechanical 
parallel assembly corresponds a parallel electric 
circuit and to a mechanic series assembly 
corresponds a series electric circuit. 

Usually, the equivalent electromechanical scheme is 
determined, which corresponds to the mathematical 
model, based on which one can determine the 
mechanical impedance or mechanical mobility. 

For example, Fig. 1 presents an elementary 
mechanical system (autovehicle and trailer) in 
translation movement (a) and its analogue mechanical 
scheme (b). 
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Table 2. The electric - magnetic analogy of parameters 

Electrics Denomination Magnetism 

( )
r r

; [ / ]E r t V m  Strength of the vectorial 
field 

( )
r r

; [ / ]H r t A m  

r r 2( ; ) [ / ]D r t C m  Flux density 
r r
( ; ) [ ]B r t T  

[ ]⋅
r

ep C m  Moment [ ]
r

/mp Nm T  

=
r r

/p eP dp d V Polarization /  
magnetization 

=
r r

/mM dp d V 

= ×
r rr

e eC p E  Torque = ×
rr

m mC p B  

= ∇ ⋅
r rr

( )e eF p E  Force = ∇ ⋅
r rr

( )m mF p B  

( )ρ ε= − ∇
r r

21/ 2e vf E E  ( ( )ε τ′ = 0 ) Volumetric force ( ) µ= × − ∆
r r r

21/ 2mf J B H  ( ( )µ τ′ = 0 ) 

( )∂
= −

∂
0;e

k
k

W q x
X

x
 

Theorem of generalized 
forces 

( )ϕ∂
= −

∂

;m
k

k

W x
X

x
 

( ) ( )= ⋅ − ⋅
r r r r rr r1

2
nT E D n D E n  

⇒
= ⋅

r r
enT n T  

Maxwellian tensions ( ) ( )= ⋅ − ⋅
r r r r rr r1

2
nT H B n H B n  

⇒
= ⋅

r r
mnT n T  

[ ]ε
0

/F m  Vacuum permittivity/ 
permeability 

[ ]µ0 /H m  

χe  Susceptivity χm  

ε χ= +1r e  Relative permittivity/ 
permeability 

µ χ= +1r m  

( )ε ε − ′= 1
0diff D E  Differential permittivity/ 

permeability 
( )µ µ− ′= 1

0diff B H  

ε
⇒

= ⋅
r r

0 etP X E  
Law of polarization/ 
magnetization 

⇒
= ⋅

r r

mtM X H  
r

pP  Permanent polarization/ 
magnetization 

r

pM  

( )
= ⋅∫

r r

�em

C

u E dr  Electro / magnetomotive 
force ( )

= ⋅∫
r r

�mm

C

u H dr  

( )
ψ σ

Σ

= ⋅∫∫
r r
D d  Flux 

( )
φ σ

Σ

= ⋅∫∫
r r
B d  

( )
ψ σ

Σ

= ⋅∫∫
r r

* E d  Flux of the field ( ε = .ct ) 

( )
φ σ

Σ

= ⋅∫∫
r r

* H d  

( )=
r
;e eV V r t  Scalar potential ( )=

r
;m mV V r t  

∇× =
r r

0E ; = −∇
r

eE V  Irotational field ∇× =
r r

0H ; = −∇
r

mH V  

= −
1 2e e eu V V  Voltage / magnetic 

tension 
= −

1 2m m mu V V  

∇ ⋅ = =
r

0 ( 0)eD q  Solenoid field ∇ ⋅ =
r

0B  

= ⋅
r r1

2
ew E D  

Volumetric density of the 
energy = ⋅

r r1

2
mw H B  

=
1

2
e e eW q V  

Energy in the capacitor/ 
inductor φ=

1

2
mW i  

ρ ε −∆ + =1
0 0e vV ; 

scalar: = −∇
r

eE V  

Poisson’s equation 
 
Potential 

µ∆ + =
r r

0A J ; 

vector: = ∇×
r r
B A   

ρ = ⇒ ∆ =0 0v eV  P.C.: Laplace’s equation = ⇒ ∆ =
r r r r

0 0J A  

Fig. 2 shows an example of elementary mechanical 
system in rotary movement (gear box): the cinematic 
scheme (a) and the analogue calculus scheme (b). 

The two schemes include specific notations for the 
two types of motion, but they can also be written in a 
generalized form, as shown in Table 1.
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Table 3. The electrostatic-electrokinetic-magnetic analogy 

Electrostatic field Electrokinetic field Magnetic field 

Differential equation of the field lines 

× =
r rr

0dr E  × =
r rr

0dr J  × =
r rr

0dr H  

Characteristics of the material 

Electric permittivity 

ε ε ε= 0 [ / ]r F m  

Electric conductivity/resistivity 

σ ρ ρ ρ ρ ρ−= = = Ω
( )

1
0; [ ]

not

e e r m  

Magnetic permeability/reluctivity 

µ µ µ ν −= = 1
0 [ / ]r H m ;  

ν - magnetic reluctivity 

Global energetic relations 

Electrostatic energy 

( ) ( )
ρ ρ σ

Σ

 
 = +
  
 
∫∫∫ ∫∫

1

2
e v e s e

D

W V dV V d  

Law of degradation of electric 
energy 

( )
= ∫∫∫J J

D

W w dV ; τ= ⋅∫
r r

0

t

Jw E Jd  

(Joule-Lenz) 

Magnetic energy 

( )
( )

( )
σ

Σ

 
 = ⋅ + ∇ ⋅ ×
  
 
∫∫∫ ∫∫

r r r r1

2
m

D

W A JdV A H d  

Particular forms of the Maxwell’s equations 

Constitutive relations 

ε
⇒

= +
r r r

pD E P  

PC: ε ε ε
⇒

→ = = ⇒ =
r r r r

; 0pct P D E  

The electric conduction law 

( )σ= +
r r r

iJ E E  (Ohm’s law) 

PC: σ ρ= ⇒ = ⇔ =
r r r r r

0iE J E E J  

Constitutive relations 

µ µ
⇒

= ⋅ +
r r r

0 pB H M  

PC: µ µ µ
⇒

→ = = ⇒ =
r r r r

; 0pct M B H  

Electric flux law (Gauss’s law) 

(L.F.)    ρ∇ ⋅ = ⇔
r

vD  

( )
σ

Σ

⇔ ⋅ =∫∫
r r

� eD d q    (I.F.) 

P.C.: ( )ρ = ⇒ ∇ ⋅ = ⇔
r

0 0 L.F.v D  

( )
σ

Σ

⇔ ⋅ =∫∫
r r

� 0D d    (I.F.) 

Law of electricity conservation 

(L.F.)   ρ∇ ⋅ = − ⇔
r

&vJ  

( )
( )σ

Σ

⋅ = −∫∫
r r

&� eJ d q t    (I.F.) 

P.C.: ( )ρ = ⇒ ∇ ⋅ = ⇔
r

& 0 0 L.F.v J  

( )
σ

Σ

⇔ ⋅ =∫∫
r r

� 0J d    (I.F.) 

Magnetic flux law (Gauss’s law) 

(L.F.)     ∇ ⋅ = ⇔
r

0B  

( )
σ

Σ

⇔ ⋅ =∫∫
r r

� 0B d  (I.F.) 

P.C.: the flux of the field vector through one field tube (stationary field) 

( )
σ

Σ

⋅ = Ψ∫∫
r r
D d  

( )
σ

Σ

⋅ =∫∫
r r
J d i  

( )
σ

Σ

⋅ = Φ∫∫
r r
B d  

Law of electrostatic potential 

( eV ); irrotational field: 

∇× = ⇒
r r

0E  ( )= −∇ ⇔
r

L.F.eE V  

⇔ ⋅ = −∫
r r

1 2e eE dr V V (I.F.) 

E.Q.S. field: 

Faraday’s law ( )=
r

0v   

( )∂
∇× = − ⇔

∂

r
r

L.F.
B

E
t

 

∂Φ
⇔ ⋅ = −

∂∫
r r

�E dr
t

 (I.F.) 

PC: = ⇒ = −∇
r r r&

0 eB E V ; 

eV - scalar electric potential 

M.Q.S. field: law of  magnetic circuits 
(Ampere’s law) 

( )∇× = ⇔
r r

D.F.H J  

( ) ( )
σ

Σ

⇔ ⋅ = ⋅∫ ∫∫
r rr r

�
C

H dr J d  (I.F.) 

PC: = ⇒ = −∇
r r

0 ;mJ H V  

mV  - scalar magnetic potential 

 Usual circuit elements (stationary field) 

Electric capacitor: 

 = = −
1 2

;e
e C e e

C

q
C u V V

u
 

Electric conductance: 

 

( )

−= = = ⋅∫
r r1;e e R

R C

i
G R u E dr

u
 

Magnetic permeance: 

 

( )

−Φ
Λ = = = ⋅∫

r r1;m
m m m

m C

R u H dr
u

 

Electric elastance: 

ε
− − = =

 ∫ 1 1

0

l

e e
ds

S C F
S

 

Electric resistance: 

[ ]
σ

−= = Ω∫ 1

0

l

e e
ds

R G
S

 

Magnetic reluctance: 

µ
−  

= = Λ   ∫ 1

0

l

m m
ds A

R
A Wb
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When drafting these schemes, we have used the II - 

type analogy (φ ↔m i ; ↔m ew w ) which assures the 

compatibility of d’Alembert’s principle and Kirchhoff’s 
first law. If the I - type analogy would have been used 

 

(φ ↔m eu ; ↔mw i ), the two analogue circuits would 

have had different configurations, because 
d’Alembert’s principle would have been incorrectly 
associated to Kirchhoff’s second law.

Table 4. The electromechanic analogy of parameters 

Generalised parameters in mechanics Electric analogy 

I type (Z) II type (Y) 

Displacement: ( ) ( )τ τ= ∫
0

t

m mq t w d  Charge: ( ) ( )τ τ= −∫
0

t

eq t i d  Flux: ( )τ τΦ = −∫
0

t

e eu d  

Velocity: ( )=
o

m mw q t  Current:  Voltage: ue (t) 

Acceleration: =
o oo

m mw q  Velocity of i: i (t) Velocity of ue: ( )
o

eu t  

Mass: M  Inductance: Le Capacitance: Ce 

Stiffness: kq Inverse of capacitance: −1
eC  Inverse of inductance: −1

eL  

Damping coefficient: kw Resistance: Re Conductance: Ge 

Inertial: ( )φ =
o

i t wM  Inductive: ( )=
o

L eu L i t  Capacitive: ( )=
o

c e ei C u t  

Elastic: φ =q q mk q  Capacitive: ( )−= 1
C e eu C q t  Inductive: −= Φ1L e ei L  E

ff
o
rt

 

Damping: φ =w w mk w  

V
o

lt
a

g
e
 

Resistive: ( )=R eu R i t  

c
u
rr

e
n
t 

Conductive: =G e ei G u  

Irrotational field 

φ = −∇
r

m mU  = −∇
r

eE V  = −∇
r

mH V  

Generalized force 

∂
= ⋅

∂

r
r

k

i
k i

m

r
X F

q
 

 ∂
= + 

∂ 
e

e
k

k q

W
X

x
 

Φ

 ∂
= − 

∂ 
e

m
k

k

W
X

x
 

Stationary characteristic 

φ φ= ( )m m mw  = ( )e eu u i  = Φ( )m m eu u  

Impulse of the body: 

( )ℑ =
r r

t wM  
Flux of the inductor: Φ =e Li  

Charge of the capacitor: 

=e e eq C u  

Mechanic power: φ=m m mP w  Electric power: =e eP u i  

1M  

2M  

2vk  AM  

Aω  

2ω  

2z  

2J  

TM  

Tω  

1z  

1ω  
11; vJ k  

2ek  

- 

+ 

a 

b 

AM  

Aω  1J  
1vk  

1N′  

1N  2N  

2N′  

2vk  

1ek  

1ω  

1z  2z  

2ω  

2J  

Fig. 2. Example of equivalent scheme for a 
mechanical system in rotation movement 

1m  2m  

( )1v t  ( )2v t  

( )F t  ek  

vk  

1vk  
2vk  

1m  2m  

ek  

vk  

1N  2N  

1vk  
2vk  

1N′  2N′  

F 

- 

+ 

a 

b 

Fig. 1. Example of equivalent scheme for a 
mechanical system in translation movement 
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Table 4. Continuation 

Elementary electric work Elementary mechanical work: 

δ φ δ=m m mL q  δ δ=e e eL u q  δ δφ=e e eL i  

Mechanical reactance: 

ω ω−= 1
m qX kM -  

Electric reactance: 

ω ω− −= 1 1
e e eX L C-  

Susceptance: =
2
e

e

e

X
B

Z
 

Mechanical impedance: 
φ

= m
m

m

Z
w

 

= +m w mZ k jX  

Electric impedance: = e
e

U
Z

I
 

= +e e eZ R jX  

Admittance: =e
e

I
Y

U
 

= −e e eY G jB  

Kinetic: = 21

2
k mW wM  Solenoid: = 21

2
L eW L i  Capacitor: =

2
1

2

c
C

e

q
W

C
 

Potential: = 21

2
p q mW k q  Capacitor: =

2
1

2

e
C

e

q
W

C
 = 21

2
L eW L i  

M
e
c
h
a
n

ic
 e

n
e
rg

y
 

Dissipative: τ= ∫ 2

0

t

d wW k w d  

Resistance: 

( )τ τ= ∫ 2

0

t

J eW R i d  

E
le

c
tr

ic
 e

n
e
rg

y
: 

Conductance: 

( )τ τ= ∫ 2

0

t

J e RW G u d  

Total energy 

( )= + +2 21

2
t d m q mW W w k qM  

 
 = + +
 
 

2
21

2

e
t J e

e

q
W W L i

C
 

Action 

( ) ( )= ℑ
r r

m mA t q t  ( ) ( )= Φe eA t q t  

Table 5 and Table 6 give two commonly used 
mathematical models with generalized (unified) 
notations corresponding to the previously defined 
generalized parameters. Table 5 shows the basic 
features of the linear oscillator with damping and 
harmonic excitation, seen as a model for the study of 
systems with concentrated parameters. 

The mechanical system with concentrated parameters 
shows a basic structure which materializes the basic 
effects (inertial, elastic, dissipative) and is 
characterized by the constitutive equation that 
indicates the dependence between a kinematic size 
(displacement, velocity or acceleration) and an effort 
size (force or torque); based on this dependency we 
can identify the mechanical impedance. 

The mechanical system with distributed parameters 
can be one-dimensional or two-dimensional, where 
waves arise (in particular small oscillations) for which 
the equations of the mathematical model are linear. 
The modeling of non-electric systems can be based 
on electric systems with distributed parameters whose 
mathematical model contains the telegraph, the 
second order differential equations with partial deri-
vates which relate the parameters u (t, x) and i (t, x). 

Table 6 shows the basic features of systems with 
distributed parameters, taking into account the two 
generalized basic sizes involved in relationships (1) 
and (2), intensive and complementary sizes: e (effort) 
and f (flow); these sizes can be identified in each of 
the areas subject to observation in this work (electric, 
namely, non-electric), so based on the mathematical 

model in which they occur, we can obtain the dynamic 
characteristics in the frequency domain, as mentioned 
by Olson (1958), Iacob (1980) and Stanomir (1989). 

The mechanic phenomena specific to continuous 
material spectrums can be modeled on the basis of 
the equations of the electromagnetic field, using the 
calculus of variations and having in view the Lagrange 
density function and Hamilton’s equations. Therefore, 
Table 6 summarizes the model with distributed 
parameters, which has a general character, allowing 
the study of analog phenomena in several fields 
(electrical, mechanical, hydraulic, acoustic, sonic, 
etc.). 

Table 7 presents the study of a mechanical circuit (Rm, 
Lm, Cm) compared to the analogue electrical circuit; in 
both assemblies (series / parallel) are shown two 
types of analogies (in impedance - analogy type I) and 
(in admittance - analogy type II), based on the 
mathematical model in Table 5. 

From the above it is confirmed that the base criterion 
for choosing the right type of analogy is the 
correspondence between Kirchhoff’s theorems and 
the two base equations which interfere in the 
description of the analogue (non-mechanic) system. 
One can observe that the I-type analogy regards 
Kirchhoff’s first theorem and the mechanics equation 
resulting from Newton’s first law (the equilibrium of 
sizes e). The II-type analogy regards Kirchhoff’s 
second theorem and the mechanics equation which 
results from Newton’s second law (the balance of the 
sizes f). A particular case is the electroacoustic 
analogy (E.A.A.), which allows modeling the acoustic 
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systems using elementary electric systems. For 
example, Fig. 3 shows the acoustic (a) and the 
analogue electric scheme (b) for a classic microphone 
(as shown by Iacob, 1980). The schemes have been 
adopted considering the II - type analogy (ue ↔ v; i 
↔pa) and the notations correspond to those in Table 
8. The mathematical model of the scheme 
corresponds to an oscillatory system without losses, 
whose scheme is reduced to a series combination 

( +
eqe eC L ) connected in parallel to 

3eC . 

 

The E.A.A. is frequently used in electroacoustics (as 
shown by Stanomir, 1989) where various 
inhomogeneous converting subsystems interfere, 
specific to unconventional conversion microdrives. 

Table 8 presents the study of a section of acoustic line 
(pipe) with distributed parameters based on the 
mechanical-acoustic analogy (Type I - direct, 
respectively, type II - reverse), obtained from the 
reference mathematical model from Table 6. 

For acoustic systems with distributed parameters the 
geometric dimensions of the system are comparable 

to the wavelength λu , for which there is a phase shift, 

due to propagation. When designing technical 
systems a mechanic-mechanic analogy is sometimes 
needed, being regarded in some cases also as a 
similitude. Next, we present an example of mechanic-
mechanic analogy. 

Table 5. The basic features of the linear oscillator (for S.C.P.) 

Parameter Definition and calculus equations Other formulae, notations Resonance values 

Pulsation Natural: ( )ω −= =
1/21/2

0 ( ) /m m m mM C K M ; pseudo-pulsation: ω ω δ ω ζ= − = −2 2 2
0 0 1p  

Mechanical 
resistance 

(damping factor) 
Rm 

Damping factor: 
δ

ζ
ω

= =
0cr

m

m

R

R
 ω= 02

crm mR M  

Damping 
coefficient 

δ ζω= = 0/ 2m mR M   δ ω ς= ≅ 0/ 2
crrez m mR M  

Driving 
frequency 

ω γ ω ω= 0/  γ ζ= − 21 2rez  

Quality factor 
ω

ω
δ

= = =0
0

1

2

m
m m

m m

M
Q M K

R R
  

ζ
=0

1

2
Q  

Static 
displacement 

φ ω φ= = =2
0 0 0/ / ; /st m mq K p p M  φ0  - amplitude of perturbation ( )ζ= 1 max

2stq q  

Generalized  mathematical model: δ ω ω+ + =&& & 2
02 sinq q q p t ;  

Transitory component: ( )δ ω ϕ−= +0 0sint
t pq q e ; Permanent component: ( )ω ϕ= −1 sinpq q t  

Characteristic 
equation 

δ ω+ + =&& & 2
02 0x x x ;  solution: δ δ ω= − ± −2 2

1,2 0x  

Amplitude ( ) ( )ω ω δω

=

− +
1

2 22 2
0 2

p
q  

( )γ ζ γ

=

− +
1

2
2 2 21 4

stq
q  ( )

ζ ζ

ζ δω

= ≅
−

≅ =

1 max 2

0

2 1

/ 2 / 2

st

st

q
q

q p

 

Phase 
δω

ϕ
ω ω

=
−2 2

0

2
arctg  

γ
ϕ

γ
=

− 2(1 )
arctg

Q
 ϕ ζ − = −  

2 2rez arctg  

Dynamic 
amplification 

factor 
ξ γ

−
= = −

1
2

1 / 1stq q  ξ
γ γ ζ

=
− +2 2 2 2

1

(1 ) 4

 ξ
ξ ζ

= ≅
−

0
2

1

2 1
rez Q  

Logarithmic 
decrement ( )δ +=1 1ln /k kq q ; ( )δ πζ ζ πζ ζ= − ≅ �

2
1 2 / 1 2 1 ; π δ ζ=1/ 1/ 2  - over amplitude coefficient 

Dynamic elastic 
constant 

φ ω ω ω= = − + =2/ m m mD mK Z K M j K j Z ; = = + = +1 ; ; m mmq z z x jy Z R jX  

Energy 
π ω

ω γ γ −
=

 − +
 

2 2 2

4 2 2 2 2
0

2

(1 )

p
W

Q
 

γ

γ γ
=
 − +
 

2

2 2 2(1 )rez

W

W Q
 π

ω
=

2
0

2
0

2
rez

Q
W  

2ek  

a b 

±  

m 

1N  eL  
1ek  

3ek  
F 

0ek  

F±  

m  

0eC  

1eC  
2eC  

3eC  

2N  

N  

Fig. 3. The mechanical scheme and the analogue 
electric scheme of the microphone 
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Table 6. The basic features of mechanical systems with distributed parameters (for S.D.P.) 

Definitions, formulas, mathematical models and their solutions Quantities; 
characteristic 

constants General case (R’; L’; C’; G’ ≠ 0) Without perditance (G’ = 0) 
Without losses  
(R’ = G’ = 0) 

Without  
distortion 

Wave 
period 

ω ω π
δ

− ′
= = = =

′
1

0 0 0 0
1

1
; 2

2

L
T f

R
    

C
o
n
s
ta

n
ts

 

Damping 
coeff. 

δ
′

=
′
;

2

R

H
δ

′
=

′1 ;
2

G

C
δ δ

′
= =

′2 2
R

H
 δ =1 0  δ δ= =1 0  

δ
δ δ= = 2

1
2

 

Time: δ =3 [ ]
x

s
a

 ; = ⇒ =p
L

x L T
a

; wave propagation speed: =
′ ′

1
a

H C
;   =

′ ′0
0

1
a

H C
; wavelength:λ = =0

0
u

a
aT

f
 

Operatio-
nal 

γ ′ ′ ′ ′= + +( ) ( )( )s R H s G C s  γ ′ ′ ′= +( ) ( )s R H s C s  γ ′ ′= =( )
s

s s HC
a

 
δ

γ = + 2( )s s
a

 

P
ro

p
a
g
a
ti
o
n
 

fa
c
to

r 

Complex γ ω ω ω γ δ ω′ ′ ′ ′= + + = +( ) ( )( );j R H j G C j j  

γ ω

ω ω

=

′ ′ ′ ′= − +2

( )j

H C j R C
 ( ) ω

γ ω =
j

j
a

 

Operatio-
nal 

δ
δ

+
′ ′ ′ ′= + + =

+0
1

2
( ) ( )( )

2
c c

s
Z s R H s G C s Z

s
 

δ
= +

0

2
1c cZ Z

s
 →

0c cZ Z  

Im
p
e
d
a
n
c
e
 

Complex 
ω

ω
ω ω

′ ′+
=

′ ′ ′ ′ ′ ′ ′ ′− + +2
( )

( )
c

R j H
Z j

R G C H j R C H G

; 
ρ′

= =
′0

0
c

aH
Z

C s
 - wave impedance 

Load (terminal) 
impedance ω

′ ′ ′= + = ⇒ = + +  ′  

2
21

; ( )
2

s s sc c s

R
Z R jx Z Z R H H

C
; 

ω
′ ′ ′= − + +  ′  

2
21

( )
2

s
R

X H H
C

 

Coupled 
eq. 

∂ ∆ ∂ ∆ ′ ′= − ∆ + ∂ ∂ 

( ) ( )e f
R f H

x t
; 
∂ ∆ ∂ ∆ ′ ′= − ∆ + ∂ ∂ 

( ) ( )f e
R e H

x t
 

M
a
th

e
m

a
ti
c
a
l 
m

o
d
e
l 

Decoupled 
eq. 

∂ ∆ ∂ ∆ ∂ ∆
′ ′ ′ ′ ′ ′ ′ ′= + + + ∆

∂∂ ∂

2 2

2 2

( ) ( ) ( )
( )

e e e
H C R C G H R G e

tx t
 

∂ ∆ ∂ ∆ ∂ ∆
′ ′ ′ ′ ′ ′ ′ ′= + + + ∆

∂∂ ∂

2 2

2 2

( ) ( ) ( )
( )

f f f
H C R C G H R G f

tx t
 

Systemic model 

∆
′ ′ ′ ′− + + ∆ =

2

2

( )
( )( ) 0

d e
R H s G C s e

dx
;  

∆
′ ′ ′ ′− + + ∆ =

2

2

( )
( )( ) 0

d f
R H s G C s f

dx
 

General 
( ) γ γ−∆ = +1 2, x xe s x C e C e  

( ) γ γ−∆ = +1 2, x xf s x C e C e  

S
o
lu

ti
o
n
 

Final 

{ }γ γ
γ

∆ = ∆ + ∆ −  2 1
1

( , ) ( ) ( )
( )

e s x e sh x e sh L x
sh L

 

{ }γ γ
γ

∆ = ∆ + ∆ −  2 1
1

( , ) ( ) ( )
( )

f s x f sh x f sh L x
sh L

 

O
p
e
ra

ti
o
n
a
l 

( )
( ) ( ) ( )

( )
( )

γ γ ωω

γ γω ω

   ∆ ∆    =     ∆ ∆       

1

1

( ) ( )

1

c

c

ch x Z sh x
e je j

sh x ch xf j f j
Z

; 

Matrix input - 
output complex 

relationship 

C
o
m

p
le

x
 

γ ω ω ω γ ωω ω

ω ω γ ω γ ωω ω

∗ ∗

∗ ∗

    ∆ ∆
    =
    ∆ ∆    

0

0

2 1

2 1

( ( ) ) [ ( ) / ( )] ( ( ) )( ) ( )

[ ( ) / ( )] ( ( ) ) ( ( ) )( ) ( )

c c

c c

ch j L Z j Z j sh j Le j e j

Z j Z j sh j L ch j Lf j f j
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Table 7. Comparison between a mechanical system, an electric series circuit and an electric parallel circuit 

 Mechanica l  s ys tem /  dev ice Type o f  ana logy Analogue e lec t r i c  c i rcu i t  

P
h

y
s

ic
a

l 

 

Type I (direct) - in impedance 

↔m eZ Z  

 
f ↔ u; v ↔ i; Rm ↔Re; 

Mm ↔Le; 
− = ↔1
m m eK C C  

M
a

th
e

m
a

ti
c

a
l 

( ) ( ) ( )τ τ+ + =∫&

0

1
t

m m k
m

M v t R v t v d f
C

( ) ( )ω ϕ= +cos
m

F
v t t

Z
;

ω
ω

= =0
0

1m
m

m m m

M
Q

R R C
 

ω ω
ϕ

ω

 −
=  

  

2
0( / ) 1

m m

arctg
R C

 

 

( ) ( ) ( )τ τ+ + =∫&

0

1
t

e e k
e

L i t R i t i d u
C

( ) ( )ω ϕ= +cos
e

U
i t t

Z
;

ω
ω

= =0
0

1e
m

e e e

L
Q

R R C
 

ω ω
ϕ

ω

 −
=  

  

2
0( / ) 1

e e

arctg
R C

 

P
h

y
s

ic
a

l 

 

 
Type I (direct) - in impedance 

↔m eZ Z  

f ↔ u; v ↔i; Rm ↔ Re; 

Mm ↔ Le; 
− = ↔1
m m eK C C  

 

 

M
o

d
e

l 
o

f 
th

e
 m

e
c

h
a

n
ic

 s
y

s
te

m
 /

 d
e

v
ic

e
 a

n
d

 o
f 

th
e

 a
n

a
lo

g
u

e
 e

le
c

tr
ic

 c
ir

c
u

it
 

M
a

th
e

m
a

ti
c

a
l ( ) ( ) ( )τ τ

•
+ + =∫

0

1
t

m m k
m

C f t G f t f d v
M

ω ϕ= +( ) cos( )mf t Z V t

ω ω
ϕ

ω

 −
=  

  

2
0( / ) 1

m
m

arctg R
M

 

ω
ω

 
= + − 

 

1
Z R j L

C
 (impedance) 

ω
ω

 
= + − 

 

1
Y G j C

L
 (admittance) 

ω −= 1/2
0 ( )LC - natural frequency 

( ) ( ) ( )τ τ
•

+ + =∫
0

1
t

e e i
e

C u t G u t u d v
L

ω ϕ= +( ) cos( )eu t Z I t  

ω ω
ϕ

ω

 −
=  

  

2
0( / ) 1

e
e

arctg R
L

 

Table 8. The mathematical model of an acoustic line with D.P., established using the electroacoustic analogy 

Type of   osc i l lat ing -  harmonic system      Domain    
 
Type 

Mechanical system with 
longitudinal motion 

Acoustic system with constant 
section (S=ct.) 

Uniform one-dimensional 
acoustic system 

P
h

y
s

ic
a

l 

m
o

d
e

l 

   

E
q
u

a
ti
o
n
s
 

∂ ∂
∂ ∂

0' '
m m

f v
+ R v + M =

x t
 

∂ ∂
∂ ∂

0' 'a
a a

p q
+ R q + M =

x t
 

∂ ∂
∂ ∂

0' '
s s

p v
+ R v + M =

x t
 

T
y

p
e

-I
-a

n
a

lo
g

y
 (

in
 i

m
p

e
d

a
n

c
e

) 

M
a

th
e

m
a

ti
c

a
l 

m
o

d
e

l 

S
y
s
te

m
 p

a
ra

m
e

te
rs

 

−1' '
m mM = ρS; C = (ES)  

' '
m m

u ' '
m m

R + jωM
Z =

G + jωC
 

0
u

E
Z = ρcS; c =

ρ
 

' '
a a

ρ S
M = ; C = ;

S E
 

' '
a a

u ' '
a a

R + jωM
Z =

G + jωC
 

0
u

ρc E
Z = ; c =

S ρ
 

−1' '
s sM = ρ; C = E ;  

' '
s s

u ' '
s s

R + jωM
Z =

G + jωC
 

0
u

E
Z = ρc; c =

ρ
 

+ 

p 
v x 

sG′  

sC′  

;s sR M′ ′  
+ 

p 
q x 

aG′  

aC′  

;a aR M′ ′  
+ 

f 
v x 

mG′  

mC′  

;m mR M′ ′  

 
 

Type II (inverse) - in admittance 

f ↔ i; v ↔ u; Rm ↔ Ge=
1

eR− ; 

Mm ↔ Ce; 
1

m m eK C L− = ↔ ; 

m eZ Y↔  
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Table 8. Continuation 

P
h

y
s

ic
a

l 

m
o

d
e

l 

   

E
q
u

a
ti
o
n
s
 

∂ ∂
∂ ∂

0' '
m m

v f
+ G f + C =

x t
 

∂ ∂
∂ ∂

0' '
a a

q p
+ G p + C =

x t
 

∂ ∂
∂ ∂

0' '
s s

v p
+ G p + C =

x t
 

T
y

p
e

- 
II

-a
n

a
lo

g
y

 (
in

 a
d

m
it

ta
n

c
e

) 

M
a

th
e

m
a

ti
c

a
l 

m
o

d
e

l 

S
y
s
te

m
 p

a
ra

m
e

te
rs

 

−1( )' '
m mM = ρS; C = ES ;  

' '
m m

u ' '
m m

G + jωC
Z =

R + jωM
 

0 1
u

E
Z = ; c =

ρcS ρ
 

' '
a a

ρ S
M = ; C = ;

S E
 

' '
a a

u ' '
a a

G + jωC
Z =

R + jωM
 

0
u

S E
Z = ; c =

ρc ρ
 

−1' '
s sM = ρ; C = E ;  

' '
s s

u ' '
s s

G + jωC
Z =

R + jωM
 

0 1
u

E
Z = ; c =

ρc ρ
 

ρ- density; E - Young’s modulus; p - acoustic pressure; q - acoustic flow; v - velocity of the medium 
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+ 

v 
p x 

sR′  

sM ′  

;s sC G′ ′  
+ 

q 
p x 

aR′  

aM ′  

;a aC G′ ′  
+ 

v 
f x 

mR′  

mM ′  

;m mC G′ ′  


